A deformation of the Orlik-Solomon algebra of a matroid m is defined as a quotient of the free associative algebra over a commutative ring R with 1. It is shown that the given generators form a Grobner basis and that after suitable homogenization the deformation and the Orlik-Solomon have the same Hilbert series as R-algebras. For supersolvable matroids, equivalently fiber type arrangements, there is a quadratic Grobner basis and hence the algebra is Koszul.
机构:
Univ Libre Bruxelles ULB, Dept Math, Blvd Triomphe, B-1050 Brussels, BelgiumUniv Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
D'Adderio, Michele
论文数: 引用数:
h-index:
机构:
Delucchi, Emanuele
Migliorini, Luca
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, I-40126 Bologna, ItalyUniv Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
Migliorini, Luca
Pagaria, Roberto
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, I-40126 Bologna, ItalyUniv Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
机构:
Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, I-40126 Bologna, ItalyUniv Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, I-40126 Bologna, Italy