Uncertainty principles for the right-sided multivariate continuous quaternion wavelet transform

被引:2
|
作者
Tefjeni, Emna [1 ]
Brahim, Kamel [2 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, Tunis, Tunisia
[2] Univ Bisha, Coll Sci, Dept Math, Bisha, Saudi Arabia
关键词
Multivariate quaternion Fourier transform; wavelet; the multivariate continuous quaternion wavelet transform; uncertainty principles; FOURIER-TRANSFORM; PITTS INEQUALITY;
D O I
10.1080/10652469.2020.1734927
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present some new elements of harmonic analysis related to the right-sided multivariate continuous quaternion wavelet transform. The main objective of this article is to introduce the concept of the right-sided multivariate continuous quaternion wavelet transform and investigate its different properties using the machinery of multivariate quaternion Fourier transform. Last, we have proven a number of uncertainty principles for the right-sided multivariate continuous quaternion wavelet transform.
引用
收藏
页码:669 / 684
页数:16
相关论文
共 50 条
  • [21] Titchmarsh’s theorem and some remarks concerning the right-sided quaternion Fourier transform
    A. Achak
    A. Bouhlal
    R. Daher
    N. Safouane
    Boletín de la Sociedad Matemática Mexicana, 2020, 26 : 599 - 616
  • [22] Uncertainty principles for the continuous wavelet transform in the Hankel setting
    Hamadi, N. B.
    Omri, S.
    APPLICABLE ANALYSIS, 2018, 97 (04) : 513 - 527
  • [23] Titchmarsh's theorem and some remarks concerning the right-sided quaternion Fourier transform
    Achak, A.
    Bouhlal, A.
    Daher, R.
    Safouane, N.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (02): : 599 - 616
  • [24] Two-Sided Quaternion Wave-Packet Transform and the Quantitative Uncertainty Principles
    Shah, Firdous A.
    Teali, Aajaz A.
    FILOMAT, 2022, 36 (02) : 449 - 467
  • [25] The continuous quaternion algebra-valued wavelet transform and the associated uncertainty principle
    Youssef El Haoui
    Journal of Pseudo-Differential Operators and Applications, 2021, 12
  • [27] Shapiro and local uncertainty principles for the multivariate continuous shearlet transform
    Nefzi, Bochra
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2021, 32 (02) : 154 - 173
  • [28] Uncertainty principles for the fractional quaternion fourier transform
    Fatima Elgadiri
    Abdellatif Akhlidj
    Journal of Pseudo-Differential Operators and Applications, 2023, 14
  • [29] Uncertainty Principles for The Quaternion Linear Canonical Transform
    A. Achak
    A. Abouelaz
    R. Daher
    N. Safouane
    Advances in Applied Clifford Algebras, 2019, 29
  • [30] Uncertainty Principles for The Quaternion Linear Canonical Transform
    Achak, A.
    Abouelaz, A.
    Daher, R.
    Safouane, N.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2019, 29 (05)