Pattern formation in chemically interacting active rotors with self-propulsion

被引:62
|
作者
Liebchen, Benno [1 ]
Cates, Michael E. [2 ]
Marenduzzo, Davide [1 ]
机构
[1] Univ Edinburgh, SUPA, Sch Phys & Astron, Edinburgh EH9 3FD, Midlothian, Scotland
[2] Univ Cambridge, Ctr Math Sci, DAMTP, Cambridge CB3 0WA, England
基金
英国工程与自然科学研究理事会;
关键词
ESCHERICHIA-COLI; BACTERIA; CHEMOTAXIS; MOTILITY; CELLS; MODEL;
D O I
10.1039/c6sm01162d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We demonstrate that active rotations in chemically signalling particles, such as autochemotactic E. coli close to walls, create a route for pattern formation based on a nonlinear yet deterministic instability mechanism. For slow rotations, we find a transient persistence of the uniform state, followed by a sudden formation of clusters contingent on locking of the average propulsion direction by chemotaxis. These clusters coarsen, which results in phase separation into a dense and a dilute region. Faster rotations arrest phase separation leading to a global travelling wave of rotors with synchronized roto-translational motion. Our results elucidate the physics resulting from the competition of two generic paradigms in active matter, chemotaxis and active rotations, and show that the latter provides a tool to design programmable self-assembly of active matter, for example to control coarsening.
引用
收藏
页码:7259 / 7264
页数:6
相关论文
共 50 条
  • [41] Theoretical modeling of catalytic self-propulsion
    Nizkaya, Tatiana, V
    Asmolov, Evgeny S.
    Vinogradova, Olga, I
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2022, 62
  • [42] Effect of self-propulsion on equilibrium clustering
    Mani, Ethayaraja
    Loewen, Hartmut
    PHYSICAL REVIEW E, 2015, 92 (03):
  • [43] Enhanced diffusion of pollutants by self-propulsion
    Zhao, Guanjia
    Stuart, Emma J. E.
    Pumera, Martin
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (28) : 12755 - 12757
  • [44] Spontaneous self-propulsion and nonequilibrium shape fluctuations of a droplet enclosing active particles
    Kokot, Gasper
    Faizi, Hammad A.
    Pradillo, Gerardo E.
    Snezhko, Alexey
    Vlahovska, Petia M.
    COMMUNICATIONS PHYSICS, 2022, 5 (01)
  • [45] Osmotic self-propulsion of slender particles
    Department of Mathematics, Imperial College London, South Kensington Campus, London
    SW7 2AZ, United Kingdom
    不详
    32000, Israel
    Phys. Fluids, 3
  • [46] MHD self-propulsion of deformable shapes
    Miloh, T.
    ADVANCES IN ENGINEERING MECHANICS - REFLECTIONS AND OUTLOOKS: IN HONOR OF THEODORE Y-T WU, 2005, : 603 - 612
  • [47] SELF-PROPULSION OF ASYMMETRICALLY VIBRATING BUBBLES
    BENJAMIN, TB
    ELLIS, AT
    JOURNAL OF FLUID MECHANICS, 1990, 212 : 65 - 80
  • [48] Self-Propulsion Simulation of a Tanker Hull
    Pacuraru, Florin
    Lungu, Adrian
    Marcu, Oana
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [49] ON SELF-PROPULSION ASSESSMENT OF MARINE VEHICLES
    Kinaci, Omer Kemal
    Gokce, Metin Kemal
    Alkan, Ahmet Dursun
    Kukner, Abdi
    BRODOGRADNJA, 2018, 69 (04): : 29 - 51
  • [50] Droplet Self-Propulsion on Superhydrophobic Microtracks
    Stamatopoulos, Christos
    Milionis, Athanasios
    Ackerl, Norbert
    Donati, Matteo
    de la Vallee, Paul Leudet
    von Rohr, Philipp Rudolf
    Poulikakos, Dimos
    ACS NANO, 2020, 14 (10) : 12895 - 12904