Degree sum conditions for the existence of homeomorphically irreducible spanning trees

被引:4
|
作者
Ito, Taisei [1 ]
Tsuchiya, Shoichi [1 ]
机构
[1] Senshu Univ, Sch Network & Informat, Kawasaki, Kanagawa, Japan
关键词
homeomorphically irreducible spanning tree; spanning tree;
D O I
10.1002/jgt.22732
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1990, Albertson, Berman, Hutchinson, and Thomassen proved a theorem which gives a minimum degree condition for the existence of a spanning tree with no vertices of degree 2. Such a spanning tree is called a homeomorphically irreducible spanning tree (HIST). In this paper, we prove that every graph of order n ( n >= 8) contains a HIST if d ( u ) + d ( v ) >= n - 1 for any nonadjacent vertices u and v. The degree sum condition is best possible.
引用
收藏
页码:162 / 170
页数:9
相关论文
共 50 条
  • [31] On zero-sum spanning trees and zero-sum connectivity
    Caro, Yair
    Hansberg, Adriana
    Lauri, Josef
    Zarb, Christina
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (01): : 1 - 24
  • [32] Degree Conditions for Spanning Brooms
    Chen, Guantao
    Ferrara, Michael
    Hu, Zhiquan
    Jacobson, Michael
    Liu, Huiqing
    JOURNAL OF GRAPH THEORY, 2014, 77 (03) : 237 - 250
  • [33] A unified existence theorem for normal spanning trees
    Pitz, Max
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 145 : 466 - 469
  • [34] A simple existence criterion for normal spanning trees
    Diestel, Reinhard
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (02):
  • [35] Degree sequences and graphs with disjoint spanning trees
    Lai, Hong-Jian
    Liang, Yanting
    Li, Ping
    Xu, Jinquan
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (14) : 1447 - 1452
  • [36] Degree-bounded minimum spanning trees
    Jothi, Raja
    Raghavachari, Balaji
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (05) : 960 - 970
  • [37] The number of bounded-degree spanning trees
    Yuster, Raphael
    RANDOM STRUCTURES & ALGORITHMS, 2023, 62 (03) : 737 - 757
  • [38] On spanning trees and walks of low maximum degree
    Sanders, DP
    Zhao, Y
    JOURNAL OF GRAPH THEORY, 2001, 36 (02) : 67 - 74
  • [39] Minimum Bottleneck Spanning Trees with Degree Bounds
    Andersen, Patrick J.
    Ras, Charl J.
    NETWORKS, 2016, 68 (04) : 302 - 314
  • [40] The distribution of node degree in maximum spanning trees
    Willemain, TR
    Bennett, MV
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2002, 72 (02) : 101 - 106