Degree sum conditions for the existence of homeomorphically irreducible spanning trees

被引:4
|
作者
Ito, Taisei [1 ]
Tsuchiya, Shoichi [1 ]
机构
[1] Senshu Univ, Sch Network & Informat, Kawasaki, Kanagawa, Japan
关键词
homeomorphically irreducible spanning tree; spanning tree;
D O I
10.1002/jgt.22732
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1990, Albertson, Berman, Hutchinson, and Thomassen proved a theorem which gives a minimum degree condition for the existence of a spanning tree with no vertices of degree 2. Such a spanning tree is called a homeomorphically irreducible spanning tree (HIST). In this paper, we prove that every graph of order n ( n >= 8) contains a HIST if d ( u ) + d ( v ) >= n - 1 for any nonadjacent vertices u and v. The degree sum condition is best possible.
引用
收藏
页码:162 / 170
页数:9
相关论文
共 50 条
  • [1] Homeomorphically irreducible spanning trees
    Chen, Guantao
    Shan, Songling
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2013, 103 (04) : 409 - 414
  • [2] GRAPHS WITH HOMEOMORPHICALLY IRREDUCIBLE SPANNING-TREES
    ALBERTSON, MO
    BERMAN, DM
    HUTCHINSON, JP
    THOMASSEN, C
    JOURNAL OF GRAPH THEORY, 1990, 14 (02) : 247 - 258
  • [3] Homeomorphically irreducible spanning trees in hexangulations of surfaces
    Zhai, Shaohui
    Wei, Erling
    He, Jinghua
    Ye, Dong
    DISCRETE MATHEMATICS, 2019, 342 (10) : 2893 - 2899
  • [4] On homeomorphically irreducible spanning trees in cubic graphs
    Hoffmann-Ostenhof, Arthur
    Noguchi, Kenta
    Ozeki, Kenta
    JOURNAL OF GRAPH THEORY, 2018, 89 (02) : 93 - 100
  • [5] Homeomorphically Irreducible Spanning Trees in Locally Connected Graphs
    Chen, Guantao
    Ren, Han
    Shan, Songling
    COMBINATORICS PROBABILITY & COMPUTING, 2012, 21 (1-2): : 107 - 111
  • [6] Plane graphs without homeomorphically irreducible spanning trees
    Nomura, Ryo
    Tsuchiya, Shoichi
    ARS COMBINATORIA, 2018, 141 : 157 - 165
  • [7] THE NUMBER OF HOMEOMORPHICALLY IRREDUCIBLE TREES, AND OTHER SPECIES
    HARARY, F
    PRINS, G
    ACTA MATHEMATICA, 1959, 101 (1-2) : 141 - 162
  • [8] Degree Sum Condition for the Existence of Spanning k-Trees in Star-Free Graphs
    Furuya, Michitaka
    Maezawa, Shun-ichi
    Matsubara, Ryota
    Matsuda, Haruhide
    Tsuchiya, Shoichi
    Yashima, Takamasa
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (01) : 5 - 13
  • [9] Color degree sum conditions for properly colored spanning trees in edge-colored graphs
    Kano, Mikio
    Maezawa, Shun-ichi
    Ota, Katsuhiro
    Tsugaki, Masao
    Yashima, Takamasa
    DISCRETE MATHEMATICS, 2020, 343 (11)
  • [10] Characterization of graphs of diameter 2 containing a homeomorphically irreducible spanning tree
    Shan, Songling
    Tsuchiya, Shoichi
    JOURNAL OF GRAPH THEORY, 2023, 104 (04) : 886 - 903