Poletskii Type Inequality for Mappings from the Orlicz-Sobolev Classes

被引:4
|
作者
Golberg, Anatoly [1 ]
Salimov, Ruslan [2 ]
Sevost'yanov, Evgeny [3 ]
机构
[1] Holon Inst Technol, Dept Appl Math, 52 Golomb St,POB 305, IL-5810201 Holon, Israel
[2] Natl Acad Sci Ukraine, Inst Math, 3 Tereschenkivska St, UA-401601 Kiev, Ukraine
[3] Zhitomir State Univ, Dept Math Anal, 40 Bolshaya Berdichevskaya St, UA-10008 Zhytomyr, Ukraine
关键词
EXTREMAL LENGTH;
D O I
10.1007/s11785-015-0460-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the distortion of p-module under non-homeomorphic mappings.f from Orlicz-Sobolev classes W-loc(1,phi) and established a strengthened form of Poletskii's inequality. This inequality was known for quasiregular mappings and conformal moduli. In addition, our estimates involve the p-outer dilatation (instead of the classical inner dilatation) and the multiplicity function. In the case of the planar domains, the condition f is an element of W-loc(1,phi) can be replaced by f is an element of W-loc(1,1).
引用
收藏
页码:881 / 901
页数:21
相关论文
共 50 条