Autonomous Vehicular Landings on the Deck of an Unmanned Surface Vehicle using Deep Reinforcement Learning

被引:31
|
作者
Polvara, Riccardo [1 ]
Sharma, Sanjay [2 ]
Wan, Jian [2 ]
Manning, Andrew [2 ]
Sutton, Robert [2 ]
机构
[1] Univ Lincoln, Coll Sci, Lincoln Ctr Autonomous Syst Res, Sch Comp Sci, Lincoln LN6 7TS, England
[2] Univ Plymouth, Fac Sci & Engn, Sch Engn, Autonomous Marine Syst Res Grp, Plymouth PL4 8AA, Devon, England
关键词
Deep reinforcement learning; Unmanned aerial vehicle; Autonomous agents; MOVING PLATFORM; NEURAL-NETWORKS; NAVIGATION; SEARCH;
D O I
10.1017/S0263574719000316
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Autonomous landing on the deck of a boat or an unmanned surface vehicle (USV) is the minimum requirement for increasing the autonomy of water monitoring missions. This paper introduces an end-to-end control technique based on deep reinforcement learning for landing an unmanned aerial vehicle on a visual marker located on the deck of a USV. The solution proposed consists of a hierarchy of Deep Q-Networks (DQNs) used as high-level navigation policies that address the two phases of the flight: the marker detection and the descending manoeuvre. Few technical improvements have been proposed to stabilize the learning process, such as the combination of vanilla and double DQNs, and a partitioned buffer replay. Simulated studies proved the robustness of the proposed algorithm against different perturbations acting on the marine vessel. The performances obtained are comparable with a state-of-the-art method based on template matching.
引用
收藏
页码:1867 / 1882
页数:16
相关论文
共 50 条
  • [31] Robust Unmanned Surface Vehicle Navigation with Distributional Reinforcement Learning
    Lin, Xi
    McConnell, John
    Englot, Brendan
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 6185 - 6191
  • [32] Autonomous Vehicle Driving Path Control with Deep Reinforcement Learning
    Tiong, Teckchai
    Saad, Ismail
    Teo, Kenneth Tze Kin
    bin Lago, Herwansyah
    2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 84 - 92
  • [33] Autonomous Vehicle Fuel Economy Optimization with Deep Reinforcement Learning
    Kim, Hyunkun
    Pyeon, Hyeongoo
    Park, Jong Sool
    Hwang, Jin Young
    Lim, Sejoon
    ELECTRONICS, 2020, 9 (11) : 1 - 19
  • [34] A Method of Deep Reinforcement Learning for Simulation of Autonomous Vehicle Control
    Anh Huynh
    Ba-Tung Nguyen
    Hoai-Thu Nguyen
    Sang Vu
    Hien Nguyen
    ENASE: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON EVALUATION OF NOVEL APPROACHES TO SOFTWARE ENGINEERING, 2021, : 372 - 379
  • [35] Decision-Making of an Autonomous Vehicle when Approached by an Emergency Vehicle using Deep Reinforcement Learning
    Shoaraee, Hamid
    Chen, Liang
    Jiang, Fan
    2021 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS DASC/PICOM/CBDCOM/CYBERSCITECH 2021, 2021, : 185 - 191
  • [36] Adaptive speed planning for Unmanned Vehicle Based on Deep Reinforcement Learning
    Liu, Hao
    Shen, Yi
    Zhou, Wenjing
    Zou, Yuelin
    Zhou, Chang
    He, Shuyao
    2024 5TH INTERNATIONAL CONFERENCE ON MECHATRONICS TECHNOLOGY AND INTELLIGENT MANUFACTURING, ICMTIM 2024, 2024, : 642 - 645
  • [37] Autonomous Underwater Vehicle Docking Under Realistic Assumptions Using Deep Reinforcement Learning
    Palomeras, Narcis
    Ridao, Pere
    DRONES, 2024, 8 (11)
  • [38] Omnidirectional Autonomous Aggressive Perching of Unmanned Aerial Vehicle using Reinforcement Learning Trajectory Generation and Control
    Huang, Yu-Ting
    Pi, Chen-Huan
    Cheng, Stone
    2022 JOINT 12TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS AND 23RD INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (SCIS&ISIS), 2022,
  • [39] Autonomous Autorotation of an Unmanned Helicopter Using a Reinforcement Learning Algorithm
    Lee, Dong Jin
    Bang, Hyochoong
    JOURNAL OF AEROSPACE INFORMATION SYSTEMS, 2013, 10 (02): : 98 - 104
  • [40] Multi-target tracking for unmanned aerial vehicle swarms using deep reinforcement learning
    Zhou, Wenhong
    Liu, Zhihong
    Li, Jie
    Xu, Xin
    Shen, Lincheng
    NEUROCOMPUTING, 2021, 466 : 285 - 297