Nonparametric M-estimation with long-memory errors

被引:6
|
作者
Beran, J
Ghosh, S
Sibbertsen, P
机构
[1] Univ Konstanz, Dept Math & Stat, D-78457 Constance, Germany
[2] Univ Dortmund, Dept Stat, Dortmund, Germany
关键词
CONVERGENCE; REGRESSION;
D O I
10.1016/S0378-3758(02)00391-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the behavior of nonparametric kernel M-estimators in the presence of long-memory errors. The optimal bandwidth and a central limit theorem are obtained. It turns out that in the Gaussian case all kernel M-estimators have the same limiting normal distribution. The motivation behind this study is illustrated with an example. (C) 2002 Elsevier B.V. All rights reserved.
引用
收藏
页码:199 / 205
页数:7
相关论文
共 50 条