Wavelet estimation for the nonparametric additive model in random design and long-memory dependent errors

被引:1
|
作者
Benhaddou, Rida [1 ,4 ]
Liu, Qing [2 ,3 ]
机构
[1] Ohio Univ, Dept Math, Athens, OH USA
[2] Wake Forest Univ, Dept Math & Stat, Winston Salem, NC USA
[3] Univ North Georgia, Dept Math, Oakwood, GA USA
[4] Ohio Univ, Dept Math, Athens, OH 45701 USA
关键词
Nonparametric additive models; wavelet series; random design; long-memory; minimax convergence rate; EFFICIENT ESTIMATION; ADAPTIVE ESTIMATION; REGRESSION; SHRINKAGE; VARIANCE;
D O I
10.1080/10485252.2023.2296523
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the nonparametric additive regression estimation in random design and long-memory errors and construct adaptive thresholding estimators based on wavelet series. The proposed approach achieves asymptotically near-optimal convergence rates when the unknown function and its univariate additive components belong to Besov space. We consider the problem under two noise structures; (1) homoskedastic Gaussian long memory errors and (2) heteroskedastic Gaussian long memory errors. In the homoskedastic long-memory error case, the estimator is completely adaptive with respect to the long-memory parameter. In the heteroskedastic long-memory case, the estimator may not be adaptive with respect to the long-memory parameter unless the heteroskedasticity is of polynomial form. In either case, the convergence rates depend on the long-memory parameter only when long-memory is strong enough, otherwise, the rates are identical to those under i.i.d. errors. In addition, convergence rates are free from the curse of dimensionality.
引用
收藏
页码:1088 / 1113
页数:26
相关论文
共 50 条