END-TO-END LEARNING OF POLYGONS FOR REMOTE SENSING IMAGE CLASSIFICATION

被引:0
|
作者
Girard, Nicolas [1 ]
Tarabalka, Yuliya [1 ]
机构
[1] Univ Cote Azur, Inria, TITANE Team, Nice, France
关键词
High-resolution aerial images; polygon; vectorial; regression; deep learning; convolutional neural networks;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
While geographic information systems typically use polygonal representations to map Earth's objects, most state-of-the-art methods produce maps by performing pixelwise classification of remote sensing images, then vectorizing the outputs. This paper studies if one can learn to directly output a vectorial semantic labeling of the image. We here cast a mapping problem as a polygon prediction task, and propose a deep learning approach which predicts vertices of the polygons outlining objects of interest. Experimental results on the Solar photovoltaic array location dataset show that the proposed network succeeds in learning to regress polygon coordinates, yielding directly vectorial map outputs.
引用
收藏
页码:2083 / 2086
页数:4
相关论文
共 50 条
  • [31] FUSENET: END-TO-END MULTISPECTRAL VHR IMAGE FUSION AND CLASSIFICATION
    Bergado, John Ray
    Persello, Claudio
    Stein, Alfred
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2091 - 2094
  • [32] SCL-Net: An End-to-End Supervised Contrastive Learning Network for Hyperspectral Image Classification
    Lu, Ting
    Hu, Yaochen
    Fu, Wei
    Ding, Kexin
    Bai, Beifang
    Fang, Leyuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [33] An End-to-End Learning Architecture for Efficient Image Encoding and Deep Learning
    Chamain, Lahiru D.
    Qi, Siyu
    Ding, Zhi
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 691 - 695
  • [34] Mask DeepLab: End-to-end image segmentation for change detection in high-resolution remote sensing images
    Wang, Yanheng
    Gao, Lianru
    Hong, Danfeng
    Sha, Jianjun
    Liu, Lian
    Zhang, Bing
    Rong, Xianhui
    Zhang, Yonggang
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 104
  • [35] Comparing End-to-End Machine Learning Methods for Spectra Classification
    Sun, Yue
    Brockhauser, Sandor
    Hegedus, Peter
    APPLIED SCIENCES-BASEL, 2021, 11 (23):
  • [36] Learning End-to-end Video Classification with Rank-Pooling
    Fernando, Basura
    Gould, Stephen
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [37] An End-to-End Deep Learning Method for Voltage Sag Classification
    Turovic, Radovan
    Dragan, Dinu
    Gojic, Gorana
    Petrovic, Veljko B.
    Gajic, Dusan B.
    Stanisavljevic, Aleksandar M.
    Katic, Vladimir A.
    ENERGIES, 2022, 15 (08)
  • [38] An efficient end-to-end deep learning architecture for activity classification
    Amel Ben Mahjoub
    Mohamed Atri
    Analog Integrated Circuits and Signal Processing, 2019, 99 : 23 - 32
  • [39] An end-to-end deep learning approach for Raman spectroscopy classification
    Zhou, Mengfei
    Hu, Yinchao
    Wang, Ruizhen
    Guo, Tian
    Yu, Qiqing
    Xia, Luyue
    Sun, Xiaofang
    JOURNAL OF CHEMOMETRICS, 2023, 37 (02)
  • [40] An efficient end-to-end deep learning architecture for activity classification
    Ben Mahjoub, Amel
    Atri, Mohamed
    ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2019, 99 (01) : 23 - 32