Some Formulas for Horn's Hypergeometric Function GB of Three Variables

被引:0
|
作者
Shehata, Ayman [1 ,2 ]
Moustafa, Shimaa I. [1 ]
Younis, Jihad [3 ]
Aydi, Hassen [4 ,5 ,6 ]
机构
[1] Assiut Univ, Fac Sci, Dept Math, Assiut 71516, Egypt
[2] Qassim Univ, Coll Sci & Arts, Dept Math, Unaizah 56264, Qassim, Saudi Arabia
[3] Univ Aden, Dept Math, Aden, Yemen
[4] Univ Sousse, Inst Super Informat & Tech Commun, H Sousse 4000, Tunisia
[5] China Med Univ, China Med Univ Hosp, Taichung 40402, Taiwan
[6] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, Ga Rankuwa, South Africa
关键词
CONTIGUOUS RELATIONS; RECURSION FORMULAS;
D O I
10.1155/2022/6565627
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Agarwal et al. (2021) established the extension of several fundamental contiguous relations for GB. Our aim in this work is to investigate several properties of differentiation formulas, differential equations, recursion relations, differential recursion relations, confluence formulas, series representations, integration formulas, and infinite summations for Horn's hypergeometric function GB of three variables. Some well-known particular cases have additionally been given.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Some Formulas for New Quadruple Hypergeometric Functions
    Younis, Jihad A.
    Aydi, Hassen
    Verma, Ashish
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [22] Decomposition formulas for some quadruple hypergeometric series
    Berdyshev, A. S.
    Hasanov, A.
    Ryskan, A. R.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2020, 100 (04): : 43 - 54
  • [23] A Note on Some Generalized Hypergeometric Reduction Formulas
    Gonzalez-Santander, Juan Luis
    Lasheras, Fernando Sanchez
    MATHEMATICS, 2023, 11 (16)
  • [24] Decomposition formulas for some triple hypergeometric functions
    Hasanov, Anvar
    Srivastava, H. M.
    Turaev, Mamasali
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (02) : 955 - 969
  • [25] On Some Aspects of Mixed Horn Formulas
    Porschen, Stefan
    Schmidt, Tatjana
    Speckenmeyer, Ewald
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2009, PROCEEDINGS, 2009, 5584 : 86 - 100
  • [26] Analytic continuation of the Horn hypergeometric series with an arbitrary number of variables
    Bezrodnykh, S. I.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2020, 31 (10) : 788 - 803
  • [27] A New Family of Summation Formulas for Hypergeometric Function
    Mathur, Radha
    Joshi, Mukesh M.
    PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS & MATERIAL SCIENCE (RAM 2013), 2013, 1536 : 1341 - +
  • [28] On a confluent hypergeometric function of two variables
    Miyamoto, T
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2002, 9 (01): : 1 - 17
  • [29] Formulas for Analytic Continuation of Horn Functions of Two Variables
    Bezrodnykh, S. I.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2022, 62 (06) : 884 - 903
  • [30] Formulas for Analytic Continuation of Horn Functions of Two Variables
    S. I. Bezrodnykh
    Computational Mathematics and Mathematical Physics, 2022, 62 : 884 - 903