The Characterization of Fatigue Damage of 316L Stainless Steel Parts Formed by Selective Laser Melting with Harmonic Generation Technique

被引:13
|
作者
Qiao, Rui [1 ]
Yan, Xiaoling [1 ]
机构
[1] Beijing Technol & Business Univ, Sch Artificial Intelligence, Beijing 102488, Peoples R China
关键词
selective laser melting; fatigue damage; dislocation; crack; nonlinear ultrasonic; DEGRADATION; METALS;
D O I
10.3390/ma15030718
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fatigue damage is the main reason for the failure of parts formed by selective laser melting (SLM) technology. This paper presents a high-order, harmonic, and nonlinear ultrasonic testing system for monitoring the generation and evolution of fatigue damage in SLM 316L stainless steel parts. The results demonstrate that the normalized ultrasonic, nonlinear coefficients show a significant dependence on the degree of fatigue damage of the tested specimen and that the normalized, ultrasonic, and nonlinear coefficients are effective in characterizing the degree of fatigue damage in SLM 316L stainless steel parts. Transmission electron microscope (TEM) and scanning electron microscope (SEM) analyses show that the variation in the normalized, ultrasonic, nonlinear coefficients reflect the generation and evolution process of dislocation and crack in the fatigue process of SLM 316L stainless steel specimens, and reveal the fatigue damage mechanism of SLM 316L stainless steel parts.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] On the characterization of stainless steel 316L parts produced by selective laser melting
    Mostafa Yakout
    M. A. Elbestawi
    Stephen C. Veldhuis
    The International Journal of Advanced Manufacturing Technology, 2018, 95 : 1953 - 1974
  • [2] On the characterization of stainless steel 316L parts produced by selective laser melting
    Yakout, Mostafa
    Elbestawi, M. A.
    Veldhuis, Stephen C.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 95 (5-8): : 1953 - 1974
  • [3] REVIEW OF THE FATIGUE PERFORMANCE OF STAINLESS STEEL 316L PARTS MANUFACTURED BY SELECTIVE LASER MELTING
    Zhang, Meng
    Li, Hua
    Zhang, Xiang
    Hardacre, David
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON PROGRESS IN ADDITIVE MANUFACTURING (PRO-AM 2016), 2016, : 563 - 568
  • [4] A Novel Method for Early Fatigue Damage Diagnosis in 316L Stainless Steel Formed by Selective Laser Melting Technology
    Yan, Xiaoling
    Tang, Xiujian
    MATERIALS, 2023, 16 (09)
  • [5] Microstructure and Fatigue Damage of 316L Stainless Steel Manufactured by Selective Laser Melting (SLM)
    Wang, Zhentao
    Yang, Shanglei
    Huang, Yubao
    Fan, Cong
    Peng, Zeng
    Gao, Zihao
    MATERIALS, 2021, 14 (24)
  • [6] Study on selective laser melting 316L stainless steel parts with superhydrophobic surface
    Sun, Jianfeng
    Wang, Weiqiang
    Liu, Zhu
    Li, Bo
    Xing, Kaifeng
    Yang, Zhou
    APPLIED SURFACE SCIENCE, 2020, 533 (533)
  • [7] Properties of 316L Stainless Steel Formed by Dual-Laser Selective Melting
    Fan, Shengjie
    Yang, Yongqiang
    Song, Changhui
    Liu, Zibin
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2023, 50 (16):
  • [8] Mechanical properties of 316L stainless steel porous structure formed by selective laser melting
    Zeng S.
    Wu Q.
    Ye J.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2020, 49 (08):
  • [9] Microstructural investigation of Selective Laser Melting 316L stainless steel parts exposed to laser re-melting
    Yasa, E.
    Kruth, J-P.
    1ST CIRP CONFERENCE ON SURFACE INTEGRITY (CSI), 2011, 19
  • [10] On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting
    Riemer, A.
    Leuders, S.
    Thoene, M.
    Richard, H. A.
    Troester, T.
    Niendorf, T.
    ENGINEERING FRACTURE MECHANICS, 2014, 120 : 15 - 25