A Novel Method for Early Fatigue Damage Diagnosis in 316L Stainless Steel Formed by Selective Laser Melting Technology

被引:3
|
作者
Yan, Xiaoling [1 ]
Tang, Xiujian [2 ]
机构
[1] Beijing Technol & Business Univ, Coll Artificial Intelligence, Beijing 102488, Peoples R China
[2] Armored Forces Acad PLA, Sci & Technol Remfg Lab, Beijing 100072, Peoples R China
关键词
nonlinear ultrasonic; early fatigue damage; selective laser melting; signal processing; reliability; ULTRASONIC; 2ND; 3RD HARMONICS; GENERATION; CRACK;
D O I
10.3390/ma16093363
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Early fatigue damage is an important factor affecting the service safety of 316L stainless steel parts formed by selective laser melting (SLM) technology. Nonlinear ultrasonic testing for early fatigue damage in SLM 316L stainless steel specimens was carried out. A new method for evaluation of early fatigue damage based on nonlinear ultrasonic testing was proposed. Empirical mode decomposition (EMD) was applied to the unsteady ultrasonic testing signal, and the signal was decomposed into multiple intrinsic mode functions (IMFs) that meet certain conditions; then, the specific IMF (ESI) containing the effective fatigue damage information was extracted. Lastly, fast Fourier transform (FFT) was applied to the specific IMF signal to obtain the required information to evaluate the damage in the measured part caused by fatigue. The results of nonlinear ultrasonic testing agreed well with transmission electron microscope experimental analysis and theoretical model of acoustic nonlinearity caused by dislocations. The change in nonlinear ultrasonic testing results reflected the generation and evolution of dislocation structure during the low-cycle fatigue regime of the SLM 316L stainless steel specimen and revealed the early fatigue damage mechanism of this metal part. Compared with the classical FFT method, the EMD-ESI-FFT method is more sensitive in identifying the early damage in SLM 316L stainless parts induced by fatigue loading, which is equivalent to improving the early fatigue damage identification and diagnosis ability and can better ensure the service safety of important metal parts.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] The Characterization of Fatigue Damage of 316L Stainless Steel Parts Formed by Selective Laser Melting with Harmonic Generation Technique
    Qiao, Rui
    Yan, Xiaoling
    MATERIALS, 2022, 15 (03)
  • [2] Microstructure and Fatigue Damage of 316L Stainless Steel Manufactured by Selective Laser Melting (SLM)
    Wang, Zhentao
    Yang, Shanglei
    Huang, Yubao
    Fan, Cong
    Peng, Zeng
    Gao, Zihao
    MATERIALS, 2021, 14 (24)
  • [3] Forming Technology and Properties of 316L Stainless Steel by Selective Laser Melting
    Yao Yansheng
    Tang Jianping
    Wang Jun
    Ge Zhangsen
    Zhang Chenglin
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (01)
  • [4] Properties of 316L Stainless Steel Formed by Dual-Laser Selective Melting
    Fan, Shengjie
    Yang, Yongqiang
    Song, Changhui
    Liu, Zibin
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2023, 50 (16):
  • [5] Microstructural Characteristics of Stainless Steel 316L Processed by Selective Laser Melting Technology
    Ara, Ismat
    Tangpong, X. W.
    Azarmi, Fardad
    TMS 2020 149TH ANNUAL MEETING & EXHIBITION SUPPLEMENTAL PROCEEDINGS, 2020, : 405 - 412
  • [6] Mechanical properties of 316L stainless steel porous structure formed by selective laser melting
    Zeng S.
    Wu Q.
    Ye J.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2020, 49 (08):
  • [7] Development of porous 316L stainless steel with novel structures by selective laser melting
    Wang, Z. Y.
    Shen, Y. F.
    Gu, D. D.
    POWDER METALLURGY, 2011, 54 (03) : 225 - 230
  • [8] On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting
    Riemer, A.
    Leuders, S.
    Thoene, M.
    Richard, H. A.
    Troester, T.
    Niendorf, T.
    ENGINEERING FRACTURE MECHANICS, 2014, 120 : 15 - 25
  • [9] REVIEW OF THE FATIGUE PERFORMANCE OF STAINLESS STEEL 316L PARTS MANUFACTURED BY SELECTIVE LASER MELTING
    Zhang, Meng
    Li, Hua
    Zhang, Xiang
    Hardacre, David
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON PROGRESS IN ADDITIVE MANUFACTURING (PRO-AM 2016), 2016, : 563 - 568
  • [10] Additive Manufacturing of 316L stainless steel by Selective Laser Melting
    Moreira Montuori, Riccardo Augusto
    Figueira, Gustavo
    Cataldi, Thiago Pacagnan
    de Alcantara, Nelson Guedes
    Bolfarini, Claudemiro
    Coelho, Reginaldo Teixeira
    Gargarella, Piter
    SOLDAGEM & INSPECAO, 2020, 25 (25): : 1 - 15