Attention-Based Radar PRI Modulation Recognition With Recurrent Neural Networks

被引:45
|
作者
Li, Xueqiong [1 ]
Liu, Zhangmeng [1 ]
Huang, Zhitao [1 ]
机构
[1] Natl Univ Def Technol, Dept Elect Sci, Changsha 410073, Peoples R China
关键词
Attention mechanism; electronic warfare; PRI modulation; recurrent neural network (RNN); PULSE; CLASSIFICATION;
D O I
10.1109/ACCESS.2020.2982654
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Analyzing radar signals is a critical task in modern Electronic Warfare (EW) environments. However, the pulse streams emitted by radars have flexible features and complex patterns which are difficult to be identified from a statistical perspective. To solve this problem, pulse repetition interval (PRI) is used as a distinguishing parameter of emitters to be identified. However, traditional PRI modulation recognition methods can only deal with simple PRI modulations and their performance will further degrade with the increasing number of emitters or noisy environments. In this paper, we introduce an attention-based recognition framework based on recurrent neural network (RNN) to categorize pulse streams with complex PRI modulations and in environments with high ratios of missing and spurious pulses. Simulation results show that our model is robust to noisy environments and has a better performance than conventional methods.
引用
收藏
页码:57426 / 57436
页数:11
相关论文
共 50 条
  • [31] Detection of Paroxysmal Atrial Fibrillation using Attention-based Bidirectional Recurrent Neural Networks
    Shashikumar, Supreeth P.
    Shah, Amit J.
    Clifford, Gari D.
    Nemati, Shamim
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 715 - 723
  • [32] Automated Labeling of Bugs and Tickets Using Attention-Based Mechanisms in Recurrent Neural Networks
    Lyubinets, Volodymyr
    Nicholas, Deon
    Boiko, Taras
    2018 IEEE SECOND INTERNATIONAL CONFERENCE ON DATA STREAM MINING & PROCESSING (DSMP), 2018, : 271 - 275
  • [33] End-to-end Language Identification using Attention-based Recurrent Neural Networks
    Geng, Wang
    Wang, Wenfu
    Zhao, Yuanyuan
    Cai, Xinyuan
    Xu, Bo
    17TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2016), VOLS 1-5: UNDERSTANDING SPEECH PROCESSING IN HUMANS AND MACHINES, 2016, : 2944 - 2948
  • [34] Deep Personalized Glucose Level Forecasting Using Attention-based Recurrent Neural Networks
    Armandpour, Mohammadreza
    Kidd, Brian
    Du, Yu
    Huang, Jianhua Z.
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [35] Sag Source Location and Type Recognition via Attention-based Independently Recurrent Neural Network
    Deng, Yaping
    Liu, Xinghua
    Jia, Rong
    Huang, Qi
    Xiao, Gaoxi
    Wang, Peng
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2021, 9 (05) : 1018 - 1031
  • [36] Attention-Based Convolutional Neural Network and Bidirectional Gated Recurrent Unit for Human Activity Recognition
    Tao, Shuai
    Zhao, Zhiqiang
    Qin, Jing
    Ji, Changqing
    Wang, Zumin
    2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 1128 - 1134
  • [37] Sag Source Location and Type Recognition via Attention-based Independently Recurrent Neural Network
    Yaping Deng
    Xinghua Liu
    Rong Jia
    Qi Huang
    Gaoxi Xiao
    Peng Wang
    JournalofModernPowerSystemsandCleanEnergy, 2021, 9 (05) : 1018 - 1031
  • [38] Attention-based multimodal sentiment analysis and emotion recognition using deep neural networks
    Aslam, Ajwa
    Sargano, Allah Bux
    Habib, Zulfiqar
    APPLIED SOFT COMPUTING, 2023, 144
  • [39] Speech Emotion Recognition via Generation using an Attention-based Variational Recurrent Neural Network
    Baruah, Murchana
    Banerjee, Bonny
    INTERSPEECH 2022, 2022, : 4710 - 4714
  • [40] An Attention-based Recurrent Convolutional Network for Vehicle Taillight Recognition
    Lee, Kuan-Hui
    Tagawa, Takaaki
    Pan, Jia-En M.
    Gaidon, Adrien
    Douillard, Bertrand
    2019 30TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV19), 2019, : 2365 - 2370