A variable gain physiological controller for a rotary left ventricular assist device

被引:2
|
作者
Silva, Luis F., V [1 ]
Cordeiro, Thiago D. [1 ]
Lima, Antonio M. N. [2 ]
机构
[1] Univ Fed Alagoas, Inst Comp, Av Lourival Melo Mota, BR-57072900 Maceio, Alagoas, Brazil
[2] Univ Fed Campina Grande, Ctr Elect Engn & Informat, Dept Elect Engn, Rua Aprigio Veloso 882, BR-58429900 Campina Grande, Paraiba, Brazil
关键词
VOLUME;
D O I
10.1109/EMBC46164.2021.9630338
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper deals with designing a physiological adaptive control law for a turbodynamic ventricular assist device (TVAD) using a lumped parameter time-varying model that describes the cardiovascular system. The TVAD is a rotary blood pump driven by an electrical motor. The system simulation also includes the adaptive feedback controller, which provides a physiologically correct cardiac output under different preload and afterload conditions. The cardiac output is estimated at each heartbeat, and the control objective is achieved by dynamically changing the motor speed controller's reference based on the systolic pressure error. TVADs provide support for blood circulation in patients with heart failure. To improve the performance of these devices, several control strategies have been developed over the years, with an emphasis on the physiological strategies that adapt their parameters to improve the patient's condition. In this paper, a new strategy is proposed using a variable gain physiological controller to keep the cardiac output in a reference value under changes in both preload and afterload. Computational models are used to evaluate the performance of this control technique, which has shown better results of adaptability than constant speed controllers and constant gain controllers.
引用
收藏
页码:5606 / 5609
页数:4
相关论文
共 50 条
  • [21] Atrial Versus Ventricular Cannulation for a Rotary Ventricular Assist Device
    Timms, Daniel
    Gregory, Shaun
    Hsu, Po-Lin
    Thomson, Bruce
    Pearcy, Mark
    McNeil, Keith
    Fraser, John
    Steinseifer, Ulrich
    ARTIFICIAL ORGANS, 2010, 34 (09) : 714 - 720
  • [22] Estimation of Left Ventricular Stroke Work for Rotary Left Ventricular Assist Devices
    Wu, Eric L.
    Maw, Martin
    Stephens, Andrew F.
    Stevens, Michael C.
    Fraser, John F.
    Tansley, Geoffrey
    Moscato, Francesco
    Gregory, Shaun D.
    ASAIO JOURNAL, 2023, 69 (09) : 817 - 826
  • [23] Treatment of Ventricular Assist Device Thrombus by Implantation of an Additional Left Ventricular Assist Device
    Ricklefs, Marcel
    Hanke, Jasmin S.
    Schmitto, Jan D.
    ARTIFICIAL ORGANS, 2018, 42 (04) : 464 - 465
  • [24] Left Ventricular Assist Device in Pregnancy
    LaRue, Shane
    Shanks, Anthony
    Wang, I-wen
    Ewald, Gregory
    Anderson, Diane
    Joseph, Susan
    OBSTETRICS AND GYNECOLOGY, 2011, 118 (02): : 426 - 428
  • [25] Current Left Ventricular Assist Device
    Chusri, Yanee
    Diloksumpan, Paweena
    Naiyanetr, Phornphop
    6TH BIOMEDICAL ENGINEERING INTERNATIONAL CONFERENCE (BMEICON 2013), 2013,
  • [26] Left ventricular assist device.
    Vilchez, RA
    Kormos, R
    Kusne, S
    NEW ENGLAND JOURNAL OF MEDICINE, 2002, 346 (13): : 1023 - 1024
  • [27] CARDIORESPONSIVE LEFT VENTRICULAR ASSIST DEVICE
    Abadeer, A.
    Putnins, M.
    Badach, J.
    Kamdar, P.
    Yang, M.
    2013 39TH ANNUAL NORTHEAST BIOENGINEERING CONFERENCE (NEBEC 2013), 2013, : 255 - 256
  • [28] Left ventricular assist device - an update
    Florian, A.
    Machler, H.
    Renz, D.
    Zimpfer, D.
    JOURNAL FUR KARDIOLOGIE, 2022, 29 (9-10): : 258 - 262
  • [29] Left ventricular assist device for everybody?
    Loardi, Claudia Maria
    Zanobini, Marco
    EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY, 2020, 57 (04) : 810 - 810
  • [30] Biologisation of the Left Ventricular Assist Device
    Guentner, H.
    Katsirntaki, K.
    Pflaum, M.
    Haverich, A.
    Wiegmann, B.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2021, 40 (04): : S300 - S300