Maximal regularity for local minimizers of non-autonomous functionals

被引:87
|
作者
Hasto, Peter [1 ,2 ]
Ok, Jihoon [3 ]
机构
[1] Univ Turku, Dept Math & Stat, FI-20014 Turku, Finland
[2] Univ Oulu, Dept Math, FI-90014 Oulu, Finland
[3] Sogang Univ, Dept Math, Seoul 04107, South Korea
基金
新加坡国家研究基金会;
关键词
Maximal regularity; non-autonomous functional; variable exponent; double phase; non-standard growth; minimizer; Holder continuity; generalized Orlicz space; Musielak-Orlicz; space; LINEAR ELLIPTIC-EQUATIONS; DOUBLE-PHASE PROBLEMS; HOLDER CONTINUITY; VARIATIONAL-PROBLEMS; PARABOLIC EQUATIONS; COMPACTNESS METHODS; NONSTANDARD GROWTH; ORLICZ SPACES; GRADIENT; INEQUALITY;
D O I
10.4171/JEMS/1118
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish local C-1;alpha-regularity for some alpha is an element of (0, 1) and C-alpha-regularity for any alpha is an element of (0, 1) of local minimizers of the functional nu bar right arrow integral(Omega)phi(x, vertical bar D nu vertical bar)dx, where phi satisfies a(p, q)-growth condition. Establishing such a regularity theory with sharp, general conditions has been an open problem since the 1980s. In contrast to previous results, we formulate the continuity requirement on phi in terms of a single condition for the map(x, t) bar right arrow phi(x, t), rather than separately in the x- and t -directions. Thus we can obtain regularity results for functionals without assuming that the gap q=p between the upper and lower growth bounds is close to 1. Moreover, for phi(x, t) with particular structure, including p-, Orlicz-, p(x)- and double phasegrowth, our single condition implies known, essentially optimal, regularity conditions. Hence, we handle regularity theory for the above functional in a universal way.
引用
收藏
页码:1285 / 1334
页数:50
相关论文
共 50 条
  • [21] Maximal regularity for non-autonomous Robin boundary conditions
    Arendt, Wolfgang
    Monniaux, Sylvie
    MATHEMATISCHE NACHRICHTEN, 2016, 289 (11-12) : 1325 - 1340
  • [22] Non-autonomous maximal regularity for fractional evolution equations
    Mahdi, Achache
    JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (02)
  • [23] Partial regularity results for non-autonomous functionals with Φ-growth conditions
    Giannetti, Flavia
    di Napoli, Antonia Passarelli
    Tachikawa, Atsushi
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (06) : 2147 - 2165
  • [24] Maximal regularity for second order non-autonomous Cauchy problems
    Batty, Charles J. K.
    Chill, Ralph
    Srivastava, Sachi
    STUDIA MATHEMATICA, 2008, 189 (03) : 205 - 223
  • [25] On non-autonomous maximal regularity for elliptic operators in divergence form
    Auscher, Pascal
    Egert, Moritz
    ARCHIV DER MATHEMATIK, 2016, 107 (03) : 271 - 284
  • [26] Maximal Regularity for Non-Autonomous Second Order Cauchy Problems
    Dier, Dominik
    Ouhabaz, El Maati
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2014, 78 (03) : 427 - 450
  • [27] MAXIMAL REGULARITY FOR EVOLUTION EQUATIONS GOVERNED BY NON-AUTONOMOUS FORMS
    Arendt, Wolfgang
    Dier, Dominik
    Laasri, Hafida
    Ouhabaz, El Maati
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2014, 19 (11-12) : 1043 - 1066
  • [28] Non-autonomous right and left multiplicative perturbations and maximal regularity
    Achache, Mahdi
    Ouhabaz, El Maati
    STUDIA MATHEMATICA, 2018, 242 (01) : 1 - 29
  • [29] Maximal Regularity for Non-autonomous Equations with Measurable Dependence on Time
    Chiara Gallarati
    Mark Veraar
    Potential Analysis, 2017, 46 : 527 - 567
  • [30] LP-maximal regularity for non-autonomous evolution equations
    Arendt, Wolfgang
    Chill, Ralph
    Fornaro, Simona
    Poupaud, Cesar
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 237 (01) : 1 - 26