Combined livestock grazing-exclusion and global warming decreases nitrogen mineralization by changing soil microbial community in a Tibetan alpine meadow

被引:13
|
作者
Li, Na [1 ,2 ]
Chang, Ruiying [3 ]
Jiang, Hui [1 ,2 ]
Tariq, Akash [4 ]
Sardans, Jordi [5 ,6 ]
Penuelas, Josep [5 ,6 ]
Sun, Feng [7 ]
Zhou, Xingmei [1 ,2 ]
机构
[1] Chinese Acad Sci, Chengdu Inst Biol, CAS Key Lab Mt Ecol Restorat & Bioresource Utiliz, Chengdu, Peoples R China
[2] Chinese Acad Sci, Chengdu Inst Biol, Ecol Restorat & Biodivers Conservat Key Lab Sichu, Chengdu, Peoples R China
[3] Chinese Acad Sci, Inst Mt Hazards & Environm, Key Lab Mt Surface Proc & Ecol Regulat, Chengdu 610041, Peoples R China
[4] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi 830011, Peoples R China
[5] CREAF CSIC UAB, Global Ecol Unit, CSIC, Barcelona 08193, Catalonia, Spain
[6] CREAF, Cerdanyola Del Valles 08193, Catalonia, Spain
[7] South China Normal Univ, Coll Life Sci, Guangzhou 510631, Peoples R China
基金
中国国家自然科学基金;
关键词
Dissolved organic nitrogen; Enzymatic activity; Labile nitrogen; Particulate organic nitrogen; Fungi; LOESS PLATEAU; VEGETATION; CARBON; BIODIVERSITY; GRASSLANDS; DEPOSITION; DIVERSITY; CLIMATE; BIOMASS; COLD;
D O I
10.1016/j.catena.2022.106589
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Alpine meadows play a key role in maintaining biodiversity, soil nutrient retention, and herders' livelihoods in mountain regions. Livestock grazing-exclusion is common in grassland management to protect and promote the sustainable use of alpine meadows. However, there are few studies evaluating the effects of traditional light grazing practices in alpine regions and grazing-exclusion impacts on soil nutrient, especially under conditions of climate warming. In this study, we conducted a five-year grazing-exclusion and warming manipulation experiment to examine the effects of grazing-exclusion on soil nitrogen fractions, microbial communities, and enzyme activities under climate warming. Treatments consisted of light-intensity grazing, grazing-exclusion, and combined grazing-exclusion and warming. Our results showed that grazing-exclusion significantly decreased potential nitrogen mineralization at a 0-5 cm depth and at altitudes of 3850 m, 4000 m, 4150 m, and 4250 m. Combined grazing-exclusion and warming also significantly decreased potential nitrogen mineralization at a 0-5 cm depth and at relatively higher altitudes of 4000 m, 4150 m, and 4250 m. Grazing-exclusion, combined grazing-exclusion and warming all shifted microbial communities from bacteria toward fungi. Grazing-exclusion significantly decreased the relative abundances of phylum Chloroflexi (bacteria) and phylum Ascomycota (fungi), while combined grazing-exclusion and warming significantly increased the relative abundances of phylum Basidiomycota (fungi). The relative abundances of phylum Ascomycota (fungi) demonstrated a positive relationship with potential nitrogen mineralization, but the relative abundances of phylum Basidiomycota (fungi) had a negative relationship with potential nitrogen mineralization. The activities of dehydrogenase and protease in grazing-exclusion and combined grazing-exclusion and warming meadows were lower than those in grazed meadows. Our results demonstrated that in the context of climate change and global warming, grazingexclusion is unsuitable as a tool for the sustainable management of alpine meadows from soil nitrogen mineralization and fractions point of view. Of concern, climate warming could potentially amplify the adverse effects of grazing-exclusion and causes depletion of soil nutrients in the alpine meadow. This research suggests that a light-intensity grazing (0.5 yak ha(-1) year(-1)) is beneficial to increase soil enzyme activity and N mineralization in alpine meadows. Our results provide substantial evidence and a useful baseline and guidance for the sustainable grazing management of alpine meadows as environments change due to climate warming in the future.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Differentiate Responses of Soil Microbial Community and Enzyme Activities to Nitrogen and Phosphorus Addition Rates in an Alpine Meadow
    Zi, Hongbiao
    Hu, Lei
    Wang, Changting
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [42] Vegetation and soil covariation, not grazing exclusion, control soil organic carbon and nitrogen in density fractions of alpine meadows in a Tibetan permafrost region
    Yuan, Zi-Qiang
    Jiang, Xiao-Jin
    CATENA, 2021, 196
  • [43] Soil nutrient heterogeneity affects community stability through changing asynchrony in an alpine meadow on the Qinghai-Tibetan Plateau
    Zheng, Li-Li
    Song, Ming-Hua
    Wu, Chu-Ping
    Meng, Jiao
    Guo, Yu
    Zu, Jia-Xing
    Yu, Fei-Hai
    GLOBAL ECOLOGY AND CONSERVATION, 2024, 53
  • [44] Warming and grazing affect soil labile carbon and nitrogen pools differently in an alpine meadow of the Qinghai-Tibet Plateau in China
    Rui, Yichao
    Wang, Shiping
    Xu, Zhihong
    Wang, Yanfen
    Chen, Chengrong
    Zhou, Xiaoqi
    Kang, Xiaoming
    Lu, Shunbao
    Hu, Yigang
    Lin, Qiaoyan
    Luo, Caiyun
    JOURNAL OF SOILS AND SEDIMENTS, 2011, 11 (06) : 903 - 914
  • [45] Soil and plant community characteristics under long-term continuous grazing of different intensities in an alpine meadow on the Tibetan plateau
    Du, Yangong
    Ke, Xun
    Guo, Xiaowei
    Cao, Guangmin
    Zhou, Huakun
    BIOCHEMICAL SYSTEMATICS AND ECOLOGY, 2019, 85 : 72 - 75
  • [46] Grazing-to-fencing conversion affects soil microbial composition, functional profiles by altering plant functional groups in a Tibetan alpine meadow
    Wang, Jie
    Wang, Xiangtao
    Liu, Guobin
    Wang, Guoliang
    Zhang, Chao
    APPLIED SOIL ECOLOGY, 2021, 166
  • [47] Effects of grazing regime on vegetation structure, productivity, soil quality, carbon and nitrogen storage of alpine meadow on the Qinghai-Tibetan Plateau
    Li, Wen
    Cao, Wenxia
    Wang, Jinlan
    Li, Xiaolong
    Xu, Changlin
    Shi, Shangli
    ECOLOGICAL ENGINEERING, 2017, 98 : 123 - 133
  • [48] Eight-year warming might induce a shift toward forbs in an alpine meadow community of the Qinghai-Tibetan Plateau by increasing the soil temperature and nitrogen content
    Xu, Manhou
    Li, Jie
    Liu, Zhongquan
    Wang, Jiaying
    Wei, Kunkun
    Yan, Jialiang
    Cheng, Jianwei
    Liu, Xiaojiao
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2024, 219
  • [49] Grazing Changed Plant Community Composition and Reduced Stochasticity of Soil Microbial Community Assembly of Alpine Grasslands on the Qinghai-Tibetan Plateau
    Li, Yu
    Dong, Shikui
    Gao, Qingzhu
    Fan, Chun
    Fayiah, Moses
    Ganjurjav, Hasbagan
    Hu, Guozheng
    Wang, Xuexia
    Yan, Yulong
    Gao, Xiaoxia
    Li, Shuai
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [50] Microbial community responses reduce soil carbon loss in Tibetan alpine grasslands under short-term warming
    Li, Yaoming
    Lv, Wangwang
    Jiang, Lili
    Zhang, Lirong
    Wang, Shiping
    Wang, Qi
    Xue, Kai
    Li, Bowen
    Liu, Peipei
    Hong, Huan
    Renzen, Wangmu
    Wang, A.
    Luo, Caiyun
    Zhang, Zhenhua
    Dorji, Tsechoe
    Tas, Neslihan
    Wang, Zhezhen
    Zhou, Huakun
    Wang, Yanfen
    GLOBAL CHANGE BIOLOGY, 2019, 25 (10) : 3438 - 3449