Vulnerability Detection with Fine-Grained Interpretations

被引:129
|
作者
Li, Yi [1 ]
Wang, Shaohua [1 ]
Nguyen, Tien N. [2 ]
机构
[1] New Jersey Inst Technol, Newark, NJ 07102 USA
[2] Univ Texas Dallas, Richardson, TX 75083 USA
基金
美国国家科学基金会;
关键词
Vulnerability Detection; Deep Learning; Intelligence Assistant; Explainable AI (XAI); Interpretable AI;
D O I
10.1145/3468264.3468597
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Despite the successes of machine learning (ML) and deep learning (DL) based vulnerability detectors (VD), they are limited to providing only the decision on whether a given code is vulnerable or not, without details on what part of the code is relevant to the detected vulnerability. We present IVDETECT, an interpretable vulnerability detector with the philosophy of using Artificial Intelligence (AI) to detect vulnerabilities, while using Intelligence Assistant (IA) to provide VD interpretations in terms of vulnerable statements. For vulnerability detection, we separately consider the vulnerable statements and their surrounding contexts via data and control dependencies. This allows our model better discriminate vulnerable statements than using the mixture of vulnerable code and contextual code as in existing approaches. In addition to the coarse-grained vulnerability detection result, we leverage interpretable AI to provide users with fine-grained interpretations that include the sub-graph in the Program Dependency Graph (PDG) with the crucial statements that are relevant to the detected vulnerability. Our empirical evaluation on vulnerability databases shows that IVDETECT outperforms the existing DL-based approaches by 43%-84% and 105%-255% in top-10 nDCG and MAP ranking scores. IVDETECT correctly points out the vulnerable statements relevant to the vulnerability via its interpretation in 67% of the cases with a top-5 ranked list. IVDETECT improves over the baseline interpretation models by 12.3%-400% and 9%-400% in accuracy.
引用
收藏
页码:292 / 303
页数:12
相关论文
共 50 条
  • [11] Binary Code Vulnerability Location Identification with Fine-grained Slicing
    Cui, Ningning
    Chen, Liwei
    Shi, Gang
    2023 3RD ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS TECHNOLOGY AND COMPUTER SCIENCE, ACCTCS, 2023, : 502 - 506
  • [12] A fine-grained taxonomy of security vulnerability in active network environments
    Yang, JS
    Han, YJ
    Kim, DS
    Chang, BH
    Chung, TM
    Na, JC
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2004, PT 4, 2004, 3046 : 681 - 688
  • [13] FVD-DPM: Fine-grained Vulnerability Detection via Conditional Diffusion Probabilistic Models
    Shao, Miaomiao
    Ding, Yuxin
    PROCEEDINGS OF THE 33RD USENIX SECURITY SYMPOSIUM, SECURITY 2024, 2024, : 7375 - 7392
  • [14] FgDetector: Fine-grained Android Malware Detection
    Li, Dongfang
    Wang, Zhaoguo
    Li, Lixin
    Wang, Zhihua
    Wang, Yucheng
    Xue, Yibo
    2017 IEEE SECOND INTERNATIONAL CONFERENCE ON DATA SCIENCE IN CYBERSPACE (DSC), 2017, : 311 - 318
  • [15] Representation Learning for Fine-Grained Change Detection
    O'Mahony, Niall
    Campbell, Sean
    Krpalkova, Lenka
    Carvalho, Anderson
    Walsh, Joseph
    Riordan, Daniel
    SENSORS, 2021, 21 (13)
  • [16] Fine-grained Evaluation on Face Detection in the Wild
    Yang, Bin
    Yan, Junjie
    Lei, Zhen
    Li, Stan Z.
    2015 11TH IEEE INTERNATIONAL CONFERENCE AND WORKSHOPS ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG), VOL. 1, 2015,
  • [17] Fine-grained Topic Detection and Tracking on Twitter
    Mamo, Nicholas
    Azzopardi, Joel
    Layfield, Colin
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE DISCOVERY, KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT (KDIR), VOL 1:, 2021, : 79 - 86
  • [18] Fine-Grained Accident Detection: Database and Algorithm
    Yu, Hongyang
    Zhang, Xinfeng
    Wang, Yaowei
    Huang, Qingming
    Yin, Baocai
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 1059 - 1069
  • [19] CANCEREMO : A Dataset for Fine-Grained Emotion Detection
    Sosea, Tiberiu
    Caragea, Cornelia
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 8892 - 8904
  • [20] Fine-grained Conflict Detection of IoT Services
    Chaki, Dipankar
    Bouguettaya, Athman
    2020 IEEE 13TH INTERNATIONAL CONFERENCE ON SERVICES COMPUTING (SCC 2020), 2020, : 321 - 328