Vulnerability Detection with Fine-Grained Interpretations

被引:129
|
作者
Li, Yi [1 ]
Wang, Shaohua [1 ]
Nguyen, Tien N. [2 ]
机构
[1] New Jersey Inst Technol, Newark, NJ 07102 USA
[2] Univ Texas Dallas, Richardson, TX 75083 USA
基金
美国国家科学基金会;
关键词
Vulnerability Detection; Deep Learning; Intelligence Assistant; Explainable AI (XAI); Interpretable AI;
D O I
10.1145/3468264.3468597
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Despite the successes of machine learning (ML) and deep learning (DL) based vulnerability detectors (VD), they are limited to providing only the decision on whether a given code is vulnerable or not, without details on what part of the code is relevant to the detected vulnerability. We present IVDETECT, an interpretable vulnerability detector with the philosophy of using Artificial Intelligence (AI) to detect vulnerabilities, while using Intelligence Assistant (IA) to provide VD interpretations in terms of vulnerable statements. For vulnerability detection, we separately consider the vulnerable statements and their surrounding contexts via data and control dependencies. This allows our model better discriminate vulnerable statements than using the mixture of vulnerable code and contextual code as in existing approaches. In addition to the coarse-grained vulnerability detection result, we leverage interpretable AI to provide users with fine-grained interpretations that include the sub-graph in the Program Dependency Graph (PDG) with the crucial statements that are relevant to the detected vulnerability. Our empirical evaluation on vulnerability databases shows that IVDETECT outperforms the existing DL-based approaches by 43%-84% and 105%-255% in top-10 nDCG and MAP ranking scores. IVDETECT correctly points out the vulnerable statements relevant to the vulnerability via its interpretation in 67% of the cases with a top-5 ranked list. IVDETECT improves over the baseline interpretation models by 12.3%-400% and 9%-400% in accuracy.
引用
收藏
页码:292 / 303
页数:12
相关论文
共 50 条
  • [1] Fine-grained vulnerability detection for medical sensor systems
    Sun, Le
    Wang, Yueyuan
    Li, Huiyun
    Muhammad, Ghulam
    INTERNET OF THINGS, 2024, 28
  • [2] Hierarchical Attention Network for Interpretable and Fine-Grained Vulnerability Detection
    Gu, Mianxue
    Feng, Hantao
    Sun, Hongyu
    Liu, Peng
    Yue, Qiuling
    Hu, Jinglu
    Cao, Chunjie
    Zhang, Yuqing
    IEEE INFOCOM 2022 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2022,
  • [3] GraphFVD: Property graph-based fine-grained vulnerability detection
    Shao, Miaomiao
    Ding, Yuxin
    Cao, Jing
    Li, Yilin
    COMPUTERS & SECURITY, 2025, 151
  • [4] Towards Fine-Grained Recognition: Joint Learning for Object Detection and Fine-Grained Classification
    Wang, Qiaosong
    Rasmussen, Christopher
    ADVANCES IN VISUAL COMPUTING, ISVC 2019, PT II, 2019, 11845 : 332 - 344
  • [5] Fine-Grained Crowdsourcing for Fine-Grained Recognition
    Jia Deng
    Krause, Jonathan
    Li Fei-Fei
    2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 580 - 587
  • [6] Textural provinces and transport interpretations with fine-grained sediments in the Skagerrak
    Stevens, RL
    Bengtsson, H
    Lepland, A
    JOURNAL OF SEA RESEARCH, 1996, 35 (1-3) : 99 - 110
  • [7] Fine-Grained Controversy Detection in Wikipedia
    Bykau, Siarhei
    Korn, Flip
    Srivastava, Divesh
    Velegrakis, Yannis
    2015 IEEE 31ST INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2015, : 1573 - 1584
  • [8] Fine-grained Design Pattern Detection
    Lebon, Maurice
    Tzerpos, Vassilios
    2012 IEEE 36TH ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), 2012, : 267 - 272
  • [9] Fine-Grained Event Trigger Detection
    Duong Minh Le
    Thien Huu Nguyen
    16TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EACL 2021), 2021, : 2745 - 2752
  • [10] A fine-grained taxonomy of security vulnerability in active network environments
    Yang, JS
    Han, YJ
    Kim, DS
    Chang, BH
    Chung, TM
    Na, JC
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2004, PT 1, 2004, 3043 : 693 - 700