Subcellular imaging of epithelium with time-lapse optical coherence tomography

被引:25
|
作者
Pan, Ying T. [1 ]
Wu, Zi L. [1 ]
Yuan, Zhi J. [1 ]
Wang, Zheng G. [1 ]
Du, Cong W. [2 ,3 ]
机构
[1] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Dept Anesthesiol, Upton, NY 11973 USA
[3] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA
关键词
tomography; optics; coherence; biomedical optics; subcellular; cancer;
D O I
10.1117/1.2800007
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We present the first experimental result of direct delineation of the nuclei of living rat bladder epithelium with ultrahigh-resolution optical coherence tomography (uOCT). We demonstrate that the cellular details embedded in the speckle noise in a uOCT image can be uncovered by time-lapse frame averaging that takes advantage of the micromotion in living biological tissue. The uOCT measurement of the nuclear size (7.9 +/- 1.4 mu m) closely matches the histological evaluation (7.2 +/- 0.8 mu m) . Unlike optical coherence microscopy (OCM), which requires a sophisticated high-NA microscopic objective, this approach uses a commercial-grade single achromatic lens (f/10mm,NA/0.25) and provides a cross-sectional image over 0.6 mm of depth without focus tracking, thus holding great promise of endoscopic optical biopsy for diagnosis and grading of flat epithelial cancer such as carcinoma in situ in vivo. (c) 2007 Society of Photo-Optical Instrumentation Engineers.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] SUBCELLULAR PARTICLES TRACKING IN TIME-LAPSE CONFOCAL MICROSCOPY IMAGES
    Li, Shuo
    Luby-Phelps, Kate
    Zhang, Baoju
    Wu, Xiaorong
    Gao, Jean
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 5973 - 5976
  • [22] Time-lapse Raman imaging of osteoblast differentiation
    Aya Hashimoto
    Yoshinori Yamaguchi
    Liang-da Chiu
    Chiaki Morimoto
    Katsumasa Fujita
    Masahide Takedachi
    Satoshi Kawata
    Shinya Murakami
    Eiichi Tamiya
    Scientific Reports, 5
  • [23] Progenitor cells caught by time-lapse imaging
    Robinson, Kevin
    Biophotonics International, 2007, 14 (02): : 40 - 41
  • [24] TIME-LAPSE VIDEO IMAGING OF THE HEMATOPOIETIC MICROENVIRONMENT
    ALLEN, TD
    EXPERIMENTAL HEMATOLOGY, 1992, 20 (01) : 122 - 125
  • [25] Culturing of avian embryos for time-lapse imaging
    Rupp, PA
    Rongish, BJ
    Czirok, A
    Little, CD
    BIOTECHNIQUES, 2003, 34 (02) : 274 - 278
  • [26] Time-lapse Imaging of Mouse Macrophage Chemotaxis
    van den Bos, Esther
    Walbaum, Stefan
    Horsthemke, Markus
    Bachg, Anne C.
    Hanley, Peter J.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2020, (158):
  • [27] Time-lapse imaging of dendritic spines in vitro
    Verkuyl, J. Martin
    Matus, Andrew
    NATURE PROTOCOLS, 2006, 1 (05) : 2399 - 2405
  • [28] Time-lapse imaging of dendritic spines in vitro
    J Martin Verkuyl
    Andrew Matus
    Nature Protocols, 2006, 1 : 2399 - 2405
  • [29] Time-lapse imaging beyond the diffraction limit
    Chitnis, Ajay
    Nogare, Damian Dalle
    METHODS, 2018, 150 : 32 - 41
  • [30] Time-lapse Raman imaging of osteoblast differentiation
    Hashimoto, Aya
    Yamaguchi, Yoshinori
    Chiu, Liang-da
    Morimoto, Chiaki
    Fujita, Katsumasa
    Takedachi, Masahide
    Kawata, Satoshi
    Murakami, Shinya
    Tamiya, Eiichi
    SCIENTIFIC REPORTS, 2015, 5