Scaling of band-gap reduction in heavily nitrogen doped GaAs

被引:69
|
作者
Zhang, Y
Mascarenhas, A
Xin, HP
Tu, CW
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
[2] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
关键词
D O I
10.1103/PhysRevB.63.161303
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The band-gap reduction caused by heavy impurity doping in a semiconductor can be written as deltaE(g)(x) proportional tox(alpha), where x is the mole fraction of the impurities, and alpha is the scaling exponent. It is well known that a = 1/3 for n- or p-type (i.e., charged) doping, where the isolated impurity center forms bound states. In contrast, the incorporation of isoelectronic impurities into a semiconductor commonly results in alloy formation. In this case, the impurities do not form any bound states (with small cluster sizes), and one finds that alpha = 1. However, for the case of nitrogen doping in GaAs, although isolated nitrogen impurities do not form bound states, nitrogen impurity pairs do, and we find alpha = 2/3. The scaling rule revealed here demonstrates that the dominant mechanism fur the large band-gap reduction observed in GaAs1-xNx is the formation of an impurity band associated with nitrogen pair bound states.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] BAND-GAP NARROWING IN SEMI-INSULATING GAAS
    HRIVNAK, L
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 1985, 127 (02): : K165 - K170
  • [42] PHOTOLUMINESCENCE EXCITATION MEASUREMENTS OF THE ABSORPTION-BAND GAP IN HEAVILY CARBON-DOPED GAAS
    WANG, L
    AITCHISON, BJ
    HAEGEL, NM
    APPLIED PHYSICS LETTERS, 1992, 60 (09) : 1111 - 1113
  • [43] Band-gap narrowing in Mn-doped GaAs probed by room-temperature photoluminescence
    Prucnal, S.
    Gao, K.
    Skorupa, I.
    Rebohle, L.
    Vines, L.
    Schmidt, H.
    Khalid, M.
    Wang, Y.
    Weschke, E.
    Skorupa, W.
    Grenzer, J.
    Huebner, R.
    Helm, M.
    Zhou, S.
    PHYSICAL REVIEW B, 2015, 92 (22)
  • [44] ABSORPTION NEAR BAND EDGES IN HEAVILY DOPED GAAS
    SRITRAKOOL, W
    SAYAKANIT, V
    GLYDE, HR
    PHYSICAL REVIEW B, 1985, 32 (02) : 1090 - 1100
  • [45] Band-gap shift in heavily doped n-type Al0.3Ga0.7As alloys
    da Silva, AF
    Persson, C
    Marcussen, MCB
    Veje, E
    de Oliveira, AG
    PHYSICAL REVIEW B, 1999, 60 (04) : 2463 - 2467
  • [46] Chemical effects of band filling and band-gap renormalization on heavily doped ZnO:MIII (Al, Ga and In): A band anti-crossing approach
    Sans, J. A.
    Sanchez-Royo, J. F.
    Tobias-Rossell, G.
    Canadell-Casanova, E.
    Segura, A.
    PHYSICS OF SEMICONDUCTORS, 2009, 1199 : 105 - +
  • [47] Band-gap narrowing of titanium dioxide by nitrogen doping
    Morikawa, T
    Asahi, R
    Ohwaki, T
    Aoki, K
    Taga, Y
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 2001, 40 (6A): : L561 - L563
  • [48] Spin and band-gap engineering in doped graphene nanoribbons
    Gorjizadeh, Narjes
    Farajian, Amir A.
    Esfarjani, Keivan
    Kawazoe, Yoshiyuki
    PHYSICAL REVIEW B, 2008, 78 (15):
  • [49] Indirect band-gap tunnelling through a (100) GaAs/AlAs/GaAs heterostructure
    Marsh, A. C.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1986, 1 (05) : 320 - 326
  • [50] Origins of band-gap renormalization in degenerately doped semiconductors
    Walsh, Aron
    Da Silva, Juarez L. F.
    Wei, Su-Huai
    PHYSICAL REVIEW B, 2008, 78 (07)