Application of 3D Printing Technology in Bone Tissue Engineering: A Review

被引:72
|
作者
Feng, Yashan [1 ]
Zhu, Shijie [2 ]
Mei, Di [3 ]
Li, Jiang [1 ]
Zhang, Jiaxiang [1 ]
Yang, Shaolong [1 ]
Guan, Shaokang [2 ]
机构
[1] Zhengzhou Railway Vocat & Tech Coll, Biomech Engn Lab, Zhengzhou 451460, Henan, Peoples R China
[2] Zhengzhou Univ, Sch Mat Sci & Engn, 97 Wenhua Rd, Zhengzhou 450002, Henan, Peoples R China
[3] Helmholtz Zentrum Geesthacht, Inst Mat Res, Magnesium Innovat Ctr MagIC, Geesthacht, Germany
基金
中国国家自然科学基金;
关键词
3D printing; tissue engineering; biomaterial; metal; bio-ceramics; biodegradable; porosity; AZ31 MAGNESIUM ALLOY; EXTRACELLULAR-MATRIX; HYDROXYAPATITE SCAFFOLDS; 3-DIMENSIONAL SCAFFOLD; DIABETIC CONDITIONS; CERAMIC SCAFFOLDS; IN-VIVO; FABRICATION; DEPOSITION; REGENERATION;
D O I
10.2174/1567201817999201113100322
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Clinically, the treatment of bone defects remains a significant challenge, as it requires autogenous bone grafts or bone graft substitutes. However, the existing biomaterials often fail to meet the clinical requirements in terms of structural support, bone induction, and controllable biodegradability. In the treatment of bone defects, 3D porous scaffolds have attracted much attention in the orthopedic field. In terms of appearance and microstructure, complex bone scaffolds created by 3D printing technology are similar to human bone. On this basis, the combination of active substances, including cells and growth factors, is more conducive to bone tissue reconstruction, which is of great significance for the personalized treatment of bone defects. With the continuous development of 3D printing technology, it has been widely used in bone defect repair as well as diagnosis and rehabilitation, creating an emerging industry with excellent market potential. Meanwhile, the diverse combination of 3D printing technology with multi-disciplinary fields, such as tissue engineering, digital medicine, and materials science, has made 3D printing products with good biocompatibility, excellent osteoinductive capacity, and stable mechanical properties. In the clinical application of the repair of bone defects, various biological materials and 3D printing methods have emerged to make patient-specific bioactive scaffolds. The microstructure of 3D printed scaffolds can meet the complex needs of bone defect repair and support the personalized treatment of patients. Some of the new materials and technologies that emerged from the 3D printing industry's advent in the past decade successfully translated into clinical practice. In this article, we first introduced the development and application of different types of materials that were used in 3D bioprinting, including metal, ceramic materials, polymer materials, composite materials, and cell tissue. The combined application of 3D bioprinting and other manufacturing methods used for bone tissue engineering are also discussed in this article. Finally, we discussed the bottleneck of 3D bioprinting technique and forecasted its research orientation and prospect.
引用
收藏
页码:847 / 861
页数:15
相关论文
共 50 条
  • [41] 3D printing of bioceramic/polycaprolactone composite scaffolds for bone tissue engineering
    Shie, Ming-You
    Lai, Chun-Che
    Chiang, Po-Han
    Chung, Han-Chi
    Ho, Chia-Che
    2022 IEEE 22ND INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2022), 2022, : 142 - 145
  • [42] Advances in 3D Printing of Highly Bioadaptive Bone Tissue Engineering Scaffolds
    Ren, Ya
    Zhang, Changru
    Liu, Yihao
    Kong, Weiqing
    Yang, Xue
    Niu, Haoyi
    Qiang, Lei
    Yang, Han
    Yang, Fei
    Wang, Chengwei
    Wang, Jinwu
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2023, 10 (01) : 255 - 270
  • [43] Advances in Translational 3D Printing for Cartilage, Bone, and Osteochondral Tissue Engineering
    Wang, Shenqiang
    Zhao, Sheng
    Yu, Jicheng
    Gu, Zhen
    Zhang, Yuqi
    SMALL, 2022, 18 (36)
  • [44] 3D Printing of PLLA/Biomineral Composite Bone Tissue Engineering Scaffolds
    Gang, Fangli
    Ye, Weilong
    Ma, Chunyang
    Wang, Wenting
    Xiao, Yi
    Liu, Chang
    Sun, Xiaodan
    MATERIALS, 2022, 15 (12)
  • [45] 3D gel-printing of hydroxyapatite scaffold for bone tissue engineering
    Shao, Huiping
    He, Jianzhuang
    Lin, Tao
    Zhang, Zhinan
    Zhang, Yumeng
    Liu, Shuwen
    CERAMICS INTERNATIONAL, 2019, 45 (01) : 1163 - 1170
  • [46] 3D Printing of Polyester Scaffolds for Bone Tissue Engineering: Advancements and Challenges
    Salehabadi, Mojtaba
    Mirzadeh, Hamid
    ADVANCED MATERIALS TECHNOLOGIES, 2024,
  • [47] Direct Integration of 3D Printing and Cryogel Scaffolds for Bone Tissue Engineering
    Olevsky, Levi M.
    Anup, Amritha
    Jacques, Mason
    Keokominh, Nadia
    Holmgren, Eric P.
    Hixon, Katherine R.
    BIOENGINEERING-BASEL, 2023, 10 (08):
  • [48] Calcium phosphate blossom for bone tissue engineering 3D printing scaffolds
    Popov, Vladimir K.
    Komlev, Vladimir S.
    Chichkov, Boris N.
    MATERIALS TODAY, 2014, 17 (02) : 96 - 97
  • [49] 3D Printing and Electrospinning of Composite Hydrogels for Cartilage and Bone Tissue Engineering
    De Mori, Arianna
    Fernandez, Marta Pena
    Blunn, Gordon
    Tozzi, Gianluca
    Roldo, Marta
    POLYMERS, 2018, 10 (03)
  • [50] Bibliometric and visualized analysis of 3D printing bioink in bone tissue engineering
    Xu, Kaihao
    Yu, Sanyang
    Wang, Zhenhua
    Zhang, Zhichang
    Zhang, Zhongti
    Frontiers in Bioengineering and Biotechnology, 2023, 11