Improved density and distribution function estimation

被引:0
|
作者
Oryshchenko, Vitaliy [1 ]
Smith, Richard J. [2 ,3 ,4 ]
机构
[1] Royal Holloway Univ London, Dept Econ, London, England
[2] Univ Melbourne, ONS Econ Stat Ctr Excellence, Cemmap, UCL, Melbourne, Vic, Australia
[3] Univ Melbourne, ONS Econ Stat Ctr Excellence, Cemmap, IFS, Melbourne, Vic, Australia
[4] Univ Cambridge, Fac Econ, Cambridge, England
来源
ELECTRONIC JOURNAL OF STATISTICS | 2019年 / 13卷 / 02期
关键词
Moment conditions; residuals; mean squared error; bandwidth; GOODNESS-OF-FIT; EMPIRICAL LIKELIHOOD; GENERALIZED-METHOD; IMPLIED PROBABILITIES; SAMPLE PROPERTIES; MOMENTS; GMM; TRANSFORMATIONS; CONSISTENCY; DEFINITION;
D O I
10.1214/19-EJS1619
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given additional distributional information in the form of moment restrictions, kernel density and distribution function estimators with implied generalised empirical likelihood probabilities as weights achieve a reduction in variance due to the systematic use of this extra information. The particular interest here is the estimation of the density or distribution functions of (generalised) residuals in semi-parametric models defined by a finite number of moment restrictions. Such estimates are of great practical interest, being potentially of use for diagnostic purposes, including tests of parametric assumptions on an error distribution, goodness-of-fit tests or tests of overidentifying moment restrictions. The paper gives conditions for the consistency and describes the asymptotic mean squared error properties of the kernel density and distribution estimators proposed in the paper. A simulation study evaluates the small sample performance of these estimators.
引用
收藏
页码:3943 / 3984
页数:42
相关论文
共 50 条
  • [21] ESTIMATION AS A FUNCTION OF DENSITY AND CONTRAST
    HORNE, EP
    ALLEE, M
    JOURNAL OF PSYCHOLOGY, 1971, 78 (01): : 87 - &
  • [22] ESTIMATION OF A DENSITY FUNCTION AT A POINT
    WEISS, L
    WOLFOWIT.J
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1967, 7 (05): : 327 - &
  • [23] ESTIMATION OF DENSITY QUANTILE FUNCTION
    BABU, GJ
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1986, 48 : 142 - 149
  • [24] Crowd Density Estimation: An Improved Approach
    Li, Wei
    Wu, Xiaojuan
    Matsumoto, Koichi
    Zhao, Hua-An
    2010 IEEE 10TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS (ICSP2010), VOLS I-III, 2010, : 1213 - +
  • [25] On the improved estimation of a function of the scale parameter of an exponential distribution based on doubly censored sample
    Patra, Lakshmi Kanta
    JOURNAL OF APPLIED STATISTICS, 2020, 47 (09) : 1637 - 1651
  • [26] Robust State Estimation of Active Distribution Networks Based on Improved IGG Weight Function
    Fang, Chen
    Liu, Jinsong
    Tian, Yingjie
    Lu, Jiawen
    2020 5TH ASIA CONFERENCE ON POWER AND ELECTRICAL ENGINEERING (ACPEE 2020), 2020, : 225 - 228
  • [27] Improved novel estimation for estimation of population distribution function using auxiliary information under stratified sampling strategy
    Semary, H. E.
    Ahmad, Sohaib
    Hamdi, Walaa A.
    Albalawi, Olayan
    Elbatal, Ibrahim
    Chesneau, Christophe
    Almarzouki, Sanaa Mohammed
    JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2024, 17 (03)
  • [28] SAR Probability Density Function Estimation Using a Generalized Form of K-Distribution
    Bian, Yong
    Mercer, Bryan
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2015, 51 (02) : 1136 - 1146
  • [29] Fast Kernel Distribution Function Estimation and fast kernel density estimation based on sparse Bayesian learning and regularization
    Yin, Xun-Fu
    Hao, Zhi-Feng
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2008, : 1756 - +
  • [30] ESTIMATION OF THE POWER DISTRIBUTION FUNCTION
    MURAVCHIK, CH
    LOFFLER, HE
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1988, 36 (01): : 132 - 134