Taylor expansion based fast multipole method for 3-D Helmholtz equations in layered media

被引:11
|
作者
Wang, Bo [1 ,2 ]
Chen, Duan [3 ]
Zhang, Bo [4 ]
Zhang, Wenzhong [2 ]
Cho, Min Hyung [5 ]
Cai, Wei [2 ]
机构
[1] Hunan Normal Univ, Sch Math & Stat, MOE LCSM, Changsha 410081, Hunan, Peoples R China
[2] Southern Methodist Univ, Dept Math, Dallas, TX 75275 USA
[3] Univ North Carolina Charlotte, Dept Math & Stat, Charlotte, NC 28223 USA
[4] Indiana Univ, Dept Comp Sci, Bloomington, IN 47408 USA
[5] Univ Massachusetts, Dept Math Sci, Lowell, MA 01854 USA
基金
美国国家科学基金会;
关键词
Fast multipole method; Layered media; Helmholtz equation; Taylor expansion; ELECTROMAGNETIC SCATTERING; INTEGRAL-EQUATION; GREENS-FUNCTIONS; SOUND-PROPAGATION; FAST ALGORITHM; SOLVER; COMPUTATION; ACCURATE; SYSTEM;
D O I
10.1016/j.jcp.2019.109008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we develop a Taylor expansion (TE) based fast multipole method (FMM) for low frequency 3D Helmholtz Green's function in layered media. Two forms of Taylor expansions, with either non-symmetric or symmetric derivatives of layered media Green's functions, are used for the implementations of the proposed TE-FMM. In the implementation with non-symmetric derivatives, an algorithm based on discrete complex image approximations and recurrence formulas is shown to be very efficient and accurate in computing the high order derivatives. Meanwhile, the implementation based on symmetric derivatives is more robust and pre-computed tables for the high order derivatives in translation operators are used. Numerical tests in layered media have validated the accuracy and O(N) complexity of the proposed algorithms. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] ON A DIRECT METHOD FOR SOLVING HELMHOLTZ TYPE EQUATIONS IN 3-D RECTANGULAR REGIONS
    MARINOS, AT
    JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 88 (01) : 62 - 85
  • [22] Plasmonics of 3-D Nanoshell Dimers Using Multipole Expansion and Finite Element Method
    Khoury, Christopher G.
    Norton, Stephen J.
    Vo-Dinh, Tuan
    ACS NANO, 2009, 3 (09) : 2776 - 2788
  • [23] Recursions for the computation of multipole translation and rotation coefficients for the 3-D helmholtz equation
    Gumerov, NA
    Duraiswami, R
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (04): : 1344 - 1381
  • [24] High performance parallel computations of 3-D fast multipole boundary element method
    Lei, Ting
    Yao, Zhenhan
    Wang, Haitao
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2007, 47 (02): : 280 - 283
  • [25] A NEW FAST MULTIPOLE BOUNDARY ELEMENT METHOD FOR SOLVING 3-D ELASTIC PROBLEM
    Gui Hai-lian
    Li Qiang
    Li Yu-gui
    Yang Xia
    Huang Qing-xue
    METALLURGY TECHNOLOGY AND MATERIALS II, 2013, 813 : 387 - +
  • [26] A Generalized Grid-Based Fast Multipole Method for Integrating Helmholtz Kernels
    Parkkinen, Pauli
    Losilla, Sergio A.
    Solala, Eelis
    Toivanen, Elias A.
    Xu, Wen-Hua
    Sundholm, Dage
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (02) : 654 - 665
  • [27] Fast Computation of Layered Media Green's Function via Recursive Taylor Expansion
    Konno, Keisuke
    Chen, Qiang
    Burkholder, Robert J.
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2017, 16 : 1048 - 1051
  • [28] Compressed Fast Multipole Representations for Homogeneous 3-D Kernels
    Adams, R. J.
    Young, J. C.
    Gedney, S. D.
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2024, 39 (02): : 91 - 96
  • [29] Fast multipole accelerated singular boundary method for the 3D Helmholtz equation in low frequency regime
    Qu, Wenzhen
    Chen, Wen
    Gu, Yan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (04) : 679 - 690
  • [30] New multipole method, for 3-D capacitance extraction
    Yang, ZZ
    Wang, ZY
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2004, 19 (04) : 544 - 549