Density-based clustering with non-continuous data

被引:2
|
作者
Azzalini, Adelchi [1 ]
Menardi, Giovanna [1 ]
机构
[1] Univ Padua, Dipartimento Sci Stat, Padua, Italy
关键词
Density estimation; Mixed variables; Modal clustering; Model-based clustering; Multidimensional scaling; DISCRIMINANT-ANALYSIS; MODEL; TREE;
D O I
10.1007/s00180-016-0644-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Density-based clustering relies on the idea of associating groups with regions of the sample space characterized by high density of the probability distribution underlying the observations. While this approach to cluster analysis exhibits some desirable properties, its use is necessarily limited to continuous data only. The present contribution proposes a simple but working way to circumvent this problem, based on the identification of continuous components underlying the non-continuous variables. The basic idea is explored in a number of variants applied to simulated data, confirming the practical effectiveness of the technique and leading to recommendations for its practical usage. Some illustrations using real data are also presented.
引用
收藏
页码:771 / 798
页数:28
相关论文
共 50 条
  • [11] Hierarchical density-based clustering of uncertain data
    Kriegel, HP
    Pfeifle, M
    Fifth IEEE International Conference on Data Mining, Proceedings, 2005, : 689 - 692
  • [12] Density-based clustering for exploration of analytical data
    M. Daszykowski
    B. Walczak
    D. L. Massart
    Analytical and Bioanalytical Chemistry, 2004, 380 : 370 - 372
  • [13] Density-based clustering
    Campello, Ricardo J. G. B.
    Kroeger, Peer
    Sander, Jorg
    Zimek, Arthur
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (02)
  • [14] Density-based clustering
    Kriegel, Hans-Peter
    Kroeger, Peer
    Sander, Joerg
    Zimek, Arthur
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2011, 1 (03) : 231 - 240
  • [15] Novel Density-Based Clustering Algorithms for Uncertain Data
    Zhang, Xianchao
    Liu, Han
    Zhang, Xiaotong
    Liu, Xinyue
    PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 2191 - 2197
  • [16] Efficient layered density-based clustering of categorical data
    Andreopoulos, Bill
    An, Aijun
    Wang, Xiaogang
    Labudde, Dirk
    JOURNAL OF BIOMEDICAL INFORMATICS, 2009, 42 (02) : 365 - 376
  • [17] A density-based clustering algorithm for the CYGNO data analysis
    Baracchini, E.
    Benussi, L.
    Bianco, S.
    Capoccia, C.
    Caponero, M.
    Cavoto, G.
    Cortez, A.
    Costa, I. A.
    Di Marco, E.
    D'Imperio, G.
    Dho, G.
    Lacoangeli, F.
    Maccarrone, G.
    Marafini, M.
    Mazzitelli, G.
    Messina, A.
    Nobrega, R. A.
    Orlandi, A.
    Paoletti, E.
    Passamonti, L.
    Petrucci, F.
    Piccolo, D.
    Pierluigi, D.
    Pinci, D.
    Renga, F.
    Rosatelli, F.
    Russo, A.
    Saviano, G.
    Tesauroc, R.
    Tomassini, S.
    JOURNAL OF INSTRUMENTATION, 2020, 15 (12)
  • [18] Density-Based Clustering of Data Streams at Multiple Resolutions
    Wan, Li
    Ng, Wee Keong
    Dang, Xuan Hong
    Yu, Philip S.
    Zhang, Kuan
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2009, 3 (03)
  • [19] Density-based clustering on massive mobile communication data
    Liu, YF
    Tang, SW
    Yang, DQ
    Chen, Y
    Wang, TJ
    Ma, S
    7TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL XI, PROCEEDINGS: COMMUNICATION, NETWORK AND CONTROL SYSTEMS, TECHNOLOGIES AND APPLICATIONS: II, 2003, : 251 - 254
  • [20] On Density-Based Data Streams Clustering Algorithms: A Survey
    Amineh Amini
    Teh Ying Wah
    Hadi Saboohi
    Journal of Computer Science and Technology, 2014, 29 : 116 - 141