PERIODIC AND ASYMPTOTICALLY PERIODIC SOLUTIONS FOR NEUTRAL NONLINEAR COUPLED VOLTERRA INTEGRO-DIFFERENTIAL SYSTEMS WITH TWO VARIABLE DELAYS

被引:2
|
作者
Mansouri, Bouzid [1 ,2 ]
Ardjouni, Abdelouaheb [3 ,4 ]
Djoudi, Ahcene [4 ]
机构
[1] Univ Annaba, Fac Sci, Dept Math, POB 12, Annaba 23000, Algeria
[2] Tech & Teacher Training Sch, Skikda 21000, Algeria
[3] Univ Souk Ahras, Fac Sci & Technol, Dept Math & Informat, POB 1553, Souk Ahras 41000, Algeria
[4] Univ Annaba, Fac Sci, Dept Math, Appl Math Lab, POB 12, Annaba 23000, Algeria
关键词
Volterra integro-differential equations; neutral differential equations; periodic solutions; asymptotic periodic solutions; Krasnoselskii fixed point theorem; DIFFERENTIAL-EQUATIONS; EXISTENCE; STABILITY;
D O I
10.21915/BIMAS.2021404
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the existence of periodic and asymptotically periodic solutions of neutral nonlinear coupled Volterra integro-differential systems. We furnish sufficient conditions for the existence of such solutions. Krasnoselskii's fixed point theorem is used in this analysis.
引用
收藏
页码:339 / 366
页数:28
相关论文
共 50 条
  • [31] Almost periodic solutions for a class of neutral integro-differential equations
    Kostic, Marko
    Velinov, Daniel
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
  • [32] Almost Periodic Solutions of Abstract Impulsive Volterra Integro-Differential Inclusions
    Du, Wei-Shih
    Kostic, Marko
    Velinov, Daniel
    FRACTAL AND FRACTIONAL, 2023, 7 (02)
  • [33] Analytic Expansion of Periodic Solutions of Integro-Differential Systems
    Zavizion, G. V.
    DIFFERENTIAL EQUATIONS, 2009, 45 (02) : 240 - 248
  • [34] Analytic expansion of periodic solutions of integro-differential systems
    G. V. Zavizion
    Differential Equations, 2009, 45 : 240 - 248
  • [35] ON THE PERIODIC SOLUTIONS FOR NONLINEAR VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS WITH ψ-HILFER FRACTIONAL DERIVATIVE
    Bouriah, Soufyane
    Foukrach, Djamal
    Benchohra, Mouffak
    Zhou, Yong
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2022, 14 (03): : 447 - 467
  • [36] PERIODIC SOLUTIONS FOR NONLINEAR VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS WITH ψ-CAPUTO FRACTIONAL DERIVATIVE
    Foukrach, Djamal
    Bouriah, Soufyane
    Benchohra, Mouffak
    Henderson, Johnny
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2022, 86 : 51 - 68
  • [37] PERIODIC SOLUTIONS OF A INTEGRO-DIFFERENTIAL EQUATION
    Alymbaev, A. T.
    Kyzy, A. Bapa
    Sharshembieva, F. K.
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2024, 31 (02): : 285 - 297
  • [38] Existence of positive periodic solutions to nonlinear integro-differential equations
    Dorociakova, Bozena
    Olach, Rudolf
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 253 : 287 - 293
  • [39] S-asymptotically ω-periodic solutions of semilinear fractional integro-differential equations
    Cuevas, Claudio
    de Souza, Julio Cesar
    APPLIED MATHEMATICS LETTERS, 2009, 22 (06) : 865 - 870
  • [40] Existence of S-asymptotically ω-periodic solutions to abstract integro-differential equations
    Carvalho dos Santos, Jose Paulo
    Henriquez, Hernan R.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 : 109 - 118