Use of the Fokker-Planck equation in high-field transport problems

被引:9
|
作者
Bringuier, E [1 ]
机构
[1] Univ Paris 06, URA 800 CNRS, F-75252 Paris 05, France
关键词
D O I
10.1119/1.19012
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
The Fokker-Planck drift-diffusion equation is often used to describe Brownian motion of a particle in thermal equilibrium with the surrounding medium. The present paper shows that the equation has the ability to describe charged particle transport far from equilibrium such as occurs in the presence of a high electric field in a neutral gas or a semiconducting solid. These transport problems are usually tackled by means of the Boltzmann transport equation, but the Fokker-Planck approach is mathematically simpler, and gives insight into the statistics of energy-exchange processes and their thermalization capacity. (C) 1998 American Association of Physics Teachers.
引用
收藏
页码:995 / 1002
页数:8
相关论文
共 50 条
  • [21] The kinetic Fokker-Planck equation with mean field interaction
    Guillin, Arnaud
    Liu, Wei
    Wu, Liming
    Zhang, Chaoen
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 150 : 1 - 23
  • [22] Quasicontinuum Fokker-Planck equation
    Alexander, Francis J.
    Rosenau, Philip
    PHYSICAL REVIEW E, 2010, 81 (04):
  • [23] FOKKER-PLANCK EQUATION FOR A PLASMA IN A MAGNETIC-FIELD
    MONTGOMERY, D
    TURNER, L
    JOYCE, G
    PHYSICS OF FLUIDS, 1974, 17 (05) : 954 - 960
  • [24] Fokker-Planck equation in the presence of a uniform magnetic field
    Dong, Chao
    Zhang, Wenlu
    Li, Ding
    PHYSICS OF PLASMAS, 2016, 23 (08)
  • [25] Lattice Fokker-Planck equation
    Succi, S.
    Melchionna, S.
    Hansen, J. -P.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2006, 17 (04): : 459 - 470
  • [26] COVARIANCE OF THE FOKKER-PLANCK EQUATION
    GARRIDO, L
    PHYSICA A, 1980, 100 (01): : 140 - 152
  • [27] On Quantum Fokker-Planck Equation
    Yano, Ryosuke
    JOURNAL OF STATISTICAL PHYSICS, 2015, 158 (01) : 231 - 247
  • [28] Fractional Fokker-Planck Equation
    Baumann, Gerd
    Stenger, Frank
    MATHEMATICS, 2017, 5 (01):
  • [29] FRACTIONAL FOKKER-PLANCK EQUATION
    Tristani, Isabelle
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (05) : 1243 - 1260
  • [30] INPAINTING WITH FOKKER-PLANCK EQUATION
    Ignat, Anca
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2019, 20 (03): : 225 - 233