Upper bounds on Shannon and Renyi entropies for central potentials

被引:26
|
作者
Sanchez-Moreno, P. [1 ,2 ]
Zozor, S. [3 ]
Dehesa, J. S. [2 ,4 ]
机构
[1] Univ Granada, Dept Matemat Aplicada, Granada, Spain
[2] Univ Granada, Inst Carlos I Fis Teor & Computac, Granada, Spain
[3] Domaine Univ, GIPSA Lab, F-38402 St Martin Dheres, France
[4] Univ Granada, Dept Fis Atom Mol & Nucl, Granada, Spain
关键词
DENSITY-DEPENDENT QUANTITIES; INFORMATION ENTROPY; SYSTEMS; UNCERTAINTY;
D O I
10.1063/1.3549585
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Renyi and Shannon entropies are information-theoretic measures, which have enabled to formulate the position-momentum uncertainty principle in a much more adequate and stringent way than the (variance-based) Heisenberg-like relation. Moreover, they are closely related to various energetic density functionals of quantum systems. Here we derive upper bounds on these quantities in terms of the second-order moment < r(2)> for general central potentials. This improves previous results of this type. The proof uses the Renyi maximization procedure with a covariance constraint due to Costa et al. [in Proceedings of the Fourth International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR), edited by A. Rangarajan, M. A. T. Figueiredo, and J. Zerubia (Springer-Verlag, Lisbon, 2003), [Lect. Notes Comput. Sci. 52, 211 (2003).]] The contributions to these bounds coming from the radial and angular parts of the physical wave functions are taken into account. Finally, the application to the d-dimensional (d >= 3) hydrogenic and oscillator-like systems is provided. (C) 2011 American Institute of Physics. [doi:10.1063/1.3549585]
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Holographic charged Renyi entropies
    Belin, Alexandre
    Hung, Ling-Yan
    Maloney, Alexander
    Matsuura, Shunji
    Myers, Robert C.
    Sierens, Todd
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (12):
  • [42] Renyi entropies in particle cascades
    Bialas, A
    Czyz, W
    Ostruszka, A
    ACTA PHYSICA POLONICA B, 2003, 34 (01): : 69 - 85
  • [43] Renyi entropies in multiparticle production
    Bialas, A
    Czyz, W
    ACTA PHYSICA POLONICA B, 2000, 31 (12): : 2803 - 2817
  • [44] Shannon and Renyi Entropy of Wavelets
    de Oliveira, H. M.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2015, 10 (01): : 13 - 26
  • [45] UNIFYING ENTROPIES OF QUANTUM LOGIC BASED ON RENYI ENTROPIES
    Giski, Zahra Eslami
    Ebrahimzadeh, Abolfazl
    REPORTS ON MATHEMATICAL PHYSICS, 2019, 83 (03) : 305 - 327
  • [46] Renyi entropies for Bernoulli distributions
    Bialas, A
    Czyz, W
    ACTA PHYSICA POLONICA B, 2001, 32 (10): : 2793 - 2800
  • [47] Interpretations of Renyi entropies and divergences
    Harremoës, P
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 365 (01) : 57 - 62
  • [48] JOINT RANGE OF RENYI ENTROPIES
    Harremoes, Peter
    KYBERNETIKA, 2009, 45 (06) : 901 - 911
  • [49] Renyi extrapolation of Shannon entropy
    Zyczkowski, K
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2003, 10 (03): : 297 - 310
  • [50] Pure and random quantum Ising chain: Shannon and Renyi entropies of the ground state via real space renormalization
    Monthus, Cecile
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2015,