Quantile regression in varying-coefficient models: non-crossing quantile curves and heteroscedasticity

被引:16
|
作者
Andriyana, Y. [1 ,2 ,4 ]
Gijbels, I. [1 ,2 ]
Verhasselt, A. [3 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Leuven, Belgium
[2] Katholieke Univ Leuven, Leuven Stat Res LStat, Leuven, Belgium
[3] Univ Hasselt, Interuniv Inst Biostat & Stat Bioinformat, CenStat, Hasselt, Belgium
[4] Univ Padjadjaran, Fac Math & Nat Sci, Dept Stat, Bandung, Indonesia
关键词
B-splines; Crossing quantile curves; Longitudinal data; P-splines; Quantile regression; Quantile sheet; Variability; Varying-coefficient models; CENTILE CURVES; AIR-POLLUTION; ESTIMATORS; EFFICIENT; SELECTION; SPLINES; ERROR;
D O I
10.1007/s00362-016-0847-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantile regression is an important tool for describing the characteristics of conditional distributions. Population conditional quantile functions cannot cross for different quantile orders. Unfortunately estimated regression quantile curves often violate this and cross each other, which can be very annoying for interpretations and further analysis. In this paper we are concerned with flexible varying-coefficient modelling, and develop methods for quantile regression that ensure that the estimated quantile curves do not cross. A second aim of the paper is to allow for some heteroscedasticity in the error modelling, and to also estimate the associated variability function. We investigate the finite-sample performances of the discussed methods via simulation studies. Some applications to real data illustrate the use of the methods in practical settings.
引用
收藏
页码:1589 / 1621
页数:33
相关论文
共 50 条
  • [21] Empirical likelihood in varying-coefficient quantile regression with missing observations
    Wang, Bao-Hua
    Liang, Han-Ying
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (01) : 267 - 283
  • [22] Inference for high-dimensional varying-coefficient quantile regression
    Dai, Ran
    Kolar, Mladen
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02): : 5696 - 5757
  • [23] Weighted quantile regression in varying-coefficient model with longitudinal data
    Lin, Fangzheng
    Tang, Yanlin
    Zhu, Zhongyi
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 145 (145)
  • [24] Quantile regression in heteroscedastic varying coefficient models
    Y. Andriyana
    I. Gijbels
    AStA Advances in Statistical Analysis, 2017, 101 : 151 - 176
  • [25] Quantile regression in heteroscedastic varying coefficient models
    Andriyana, Y.
    Gijbels, I.
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2017, 101 (02) : 151 - 176
  • [26] Quantile Regression for Single-index Varying-coefficient Models with Missing Covariates at Random
    Ji, Xiaobo
    Luo, Shuanghua
    Liang, Meijuan
    IAENG International Journal of Applied Mathematics, 2024, 54 (06) : 1117 - 1124
  • [27] Estimation and inference in functional varying-coefficient single-index quantile regression models
    Zhu, Hanbing
    Zhang, Tong
    Zhang, Yuanyuan
    Lian, Heng
    JOURNAL OF NONPARAMETRIC STATISTICS, 2024, 36 (03) : 643 - 672
  • [28] Quantile regression for robust estimation and variable selection in partially linear varying-coefficient models
    Yang, Jing
    Lu, Fang
    Yang, Hu
    STATISTICS, 2017, 51 (06) : 1179 - 1199
  • [29] Principal single-index varying-coefficient models for dimension reduction in quantile regression
    Zhao, Weihua
    Zhang, Fode
    Li, Rui
    Lian, Heng
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (05) : 800 - 818
  • [30] Deep support vector quantile regression with non-crossing constraints
    Shin, Wooyoung
    Jung, Yoonsuh
    COMPUTATIONAL STATISTICS, 2023, 38 (04) : 1947 - 1976