Quantum jumps and entropy production

被引:56
|
作者
Breuer, HP [1 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, Fachbereich Phys, D-26111 Oldenburg, Germany
[2] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany
关键词
D O I
10.1103/PhysRevA.68.032105
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The irreversible motion of an open quantum system can be represented through an ensemble of state vectors following a stochastic dynamics with piecewise deterministic paths. It is shown that this representation leads to a natural definition of the rate of quantum entropy production. The entropy production rate is expressed in terms of the von Neumann entropy and of the numbers of quantum jumps corresponding to the various decay channels of the open system. The proof of the positivity and of the convexity of the entropy production rate is given. Monte Carlo simulations of the stochastic dynamics of a driven qubit and of a Lambda configuration involving a dark state are performed in order to illustrate the general theory.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Quantum jumps
    Tsakmakidis, Kosmas
    NATURE MATERIALS, 2013, 12 (02) : 91 - 91
  • [22] 'QUANTUM JUMPS'
    OBRIEN, T
    PLOUGHSHARES, 1983, 9 (04) : 11 - 44
  • [23] Entropy Production in Quantum Spin Systems
    David Ruelle
    Communications in Mathematical Physics, 2001, 224 : 3 - 16
  • [24] Quantum entropy production as a measure of irreversibility
    Callens, I
    De Roeck, W
    Jacobs, T
    Maes, C
    Netocny, K
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 187 (1-4) : 383 - 391
  • [25] Upper bound for quantum entropy production from entropy flux
    Salazar, Domingos S. P.
    PHYSICAL REVIEW E, 2022, 105 (04)
  • [26] JUMPS OF ENTROPY IN ONE DIMENSION
    MISIUREWICZ, M
    FUNDAMENTA MATHEMATICAE, 1989, 132 (03) : 215 - 226
  • [27] Quantum Chaos and Quantum RandomnessParadigms of Entropy Production on the Smallest Scales
    Dittrich, Thomas
    ENTROPY, 2019, 21 (03):
  • [28] Multiple entropy production for multitime quantum processes
    Huang Z.
    Physical Review A, 2023, 108 (03)
  • [29] Minimum Entropy Production Effect on a Quantum Scale
    Markus, Ferenc
    Gambar, Katalin
    ENTROPY, 2021, 23 (10)
  • [30] Equivalent Definitions of the Quantum Nonadiabatic Entropy Production
    Jordan M. Horowitz
    Takahiro Sagawa
    Journal of Statistical Physics, 2014, 156 : 55 - 65