Combined effect of coarse aggregate and fiber on tensile behavior of ultra-high performance concrete

被引:164
|
作者
Liu, Jianzhong [1 ]
Han, Fangyu [1 ]
Cui, Gong [1 ]
Zhang, Qianqian [1 ]
Lv, Jin [1 ]
Zhang, Lihui [1 ]
Yang, Zhiqian [1 ]
机构
[1] Jiangsu Res Inst Bldg Sci, State Key Lab High Performance Civil Engn Mat, Nanjing 211108, Jiangsu, Peoples R China
关键词
Ultra-high performance concrete; Coarse aggregate; Fiber; Bonding behavior; Tensile behavior; REACTIVE POWDER CONCRETE; REINFORCED CONCRETE; MECHANICAL-PROPERTIES; FLEXURAL BEHAVIOR; SILICA FUME; UHP-FRC; SIZE; DURABILITY;
D O I
10.1016/j.conbuildmat.2016.05.039
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this study, combined effect of coarse aggregate and fiber properties on tensile behavior of ultra-high performance concrete (UHPC) was investigated. Four replacement levels of coarse aggregates (0%, 15%, 25%, 35% by volume of mortar) and four types of steel fiber (three micro-fibers with a shape difference and one macro-fiber) were considered. Results showed that replacement level of coarse aggregate has a critical value of 25% and different fiber types act similarly in regard of compressive strength. Coarse aggregate brought impairment to bonding strength and utilization efficiency of fiber, especially for deformed ones. Furthermore, coarse aggregate could be successfully introduced into system of UHPC without impairing its tensile properties at a favorable replacement level (.25%). In addition, phenomenon of strain hardening behaviors of UHPC incorporating coarse aggregate could be triggered by further increasing fiber dosage to larger than 2.5%, however, it was independent of fiber type due to combined effect of coarse aggregate and fiber bridging. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:310 / 318
页数:9
相关论文
共 50 条
  • [31] Experimental Study on Bonding Performance Between Rebar and Coarse Aggregate Ultra-High Performance Concrete
    Zhao C.
    Li H.
    Deng K.
    Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 2019, 54 (05): : 937 - 944
  • [32] Lightweight Aggregate in Ultra-high Performance Concrete
    Zhang G.
    Guo K.
    Cheng H.
    Ding Q.
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2023, 26 (08): : 886 - 896and905
  • [33] Monotonic and cyclic compressive behavior of ultra-high performance concrete with coarse aggregate: Experimental investigation and constitutive model
    Li, Biao
    Wu, Chen
    Wang, Shunan
    Li, Yang
    Wu, Fanghong
    Xia, Dongtao
    Hu, Junan
    JOURNAL OF BUILDING ENGINEERING, 2023, 68
  • [34] Different Curing Systems on Mechanical Properties of Ultra-High Performance Concrete with Coarse Aggregate
    赵秋
    杨明
    庄一舟
    聂宇
    Journal of Donghua University(English Edition), 2017, 34 (04) : 492 - 497
  • [35] Effect of steel-polypropylene hybrid fiber and coarse aggregate inclusion on the stress-strain behavior of ultra-high performance concrete under uniaxial compression
    Deng, Fangqian
    Xu, Lihua
    Chi, Yin
    Wu, Fanghong
    Chen, Qian
    COMPOSITE STRUCTURES, 2020, 252
  • [36] Tensile behavior of rebar-reinforced coarse aggregate ultra-high performance concrete (R-CA-UHPC) members: Experiments and restrained shrinkage creep effect
    Shi, Zhanchong
    Liang, Minfei
    Su, Qingtian
    Kanstad, Terje
    Ferrara, Liberato
    CEMENT & CONCRETE COMPOSITES, 2024, 151
  • [37] Influence of fibers on tensile behavior of ultra-high performance concrete: a review
    Wang, Yanzhi
    Qiao, Pizhong
    Sun, Jing
    Chen, An
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 430
  • [38] Effects of steel fibers and concrete strength on flexural toughness of ultra-high performance concrete with coarse aggregate
    Wang, Shangwei
    Zhu, Haitang
    Liu, Fan
    Cheng, Shengzhao
    Wang, Bo
    Yang, Lin
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 17
  • [39] A new scattering-filling process for regulating coarse aggregate and fiber spatial distribution in ultra-high performance concrete
    Zhao, Xudong
    Xu, Zhengzhong
    Tian, Weichen
    Lu, Jian-Xin
    Liu, Jiabao
    Li, Shixiang
    Shui, Zhonghe
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 416
  • [40] ECONOMICAL EFFECT ON ULTRA-HIGH PERFORMANCE CONCRETE BY USING OF COARSE AGGREGATES
    Schneider, M.
    Ofner, S.
    Steiner, T.
    Druml, P.
    II INTERNATIONAL CONFERENCE ON CONCRETE SUSTAINABILITY - ICCS16, 2016, : 1208 - 1216