Existence, nonexistence and asymptotic behavior of boundary blow-up solutions to p(x)-Laplacian problems with singular coefficient

被引:11
|
作者
Zhang, Qihu [1 ]
机构
[1] Zhengzhou Univ Light Ind, Dept Math & Informat Sci, Zhengzhou 450002, Henan, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
p(x)-Laplacian; Sub-solution; Super-solution; Singularity; ELLIPTIC-EQUATIONS; VARIABLE EXPONENT; DIFFERENTIAL-EQUATIONS; UNIQUENESS; REGULARITY; SPACES; FUNCTIONALS; GRADIENT;
D O I
10.1016/j.na.2010.10.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the problem {-Delta(p(x))u + rho(x)f(x, u) = 0 in Omega, u(x) -> +infinity as d(x, partial derivative Omega) -> 0, where -Delta(p(x))u = -div(vertical bar del u vertical bar(p(x)-2)del u) is called the p(x)-Laplacian, and rho(x) is a singular coefficient. The existence and nonexistence of boundary blow-up solutions is discussed, and the asymptotic behavior of boundary blow-up solutions is given. In particular, we do not assume radial symmetric conditions, and the pointwise different exact blow-up rate of solutions has been discussed. Published by Elsevier Ltd
引用
收藏
页码:2045 / 2061
页数:17
相关论文
共 50 条