Positive solutions for fractional differential systems with nonlocal Riemann-Liouville fractional integral boundary conditions

被引:5
|
作者
Neamprem, Khomsan [1 ]
Muensawat, Thanadon [1 ]
Ntouyas, Sotiris K. [2 ,3 ]
Tariboon, Jessada [1 ]
机构
[1] King Mongkuts Univ Technol North Bangkok, Fac Sci Appl, Dept Math, Nonlinear Dynam Anal Res Ctr, Bangkok 10800, Thailand
[2] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
[3] King Abdulaziz Univ, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Fac Sci, POB 80203, Jeddah 21589, Saudi Arabia
关键词
Fractional differential systems; Nonlocal boundary conditions; Riemann-Liouville fractional integral conditions; Positive solutions; Fixed point theorems; COUPLED SYSTEM; EQUATIONS; EXISTENCE;
D O I
10.1007/s11117-016-0433-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the positive solutions of fractional differential system with coupled nonlocal Riemann-Liouville fractional integral boundary conditions. Our analysis relies on Leggett-Williams and Guo-Krasnoselskii's fixed point theorems. Two examples are worked out to illustrate our main results.
引用
收藏
页码:825 / 845
页数:21
相关论文
共 50 条
  • [31] Nonlocal fractional-order boundary value problems with generalized Riemann-Liouville integral boundary conditions
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (07) : 1281 - 1296
  • [32] Ulam Stability of Fractional Impulsive Differential Equations with Riemann-Liouville Integral Boundary Conditions
    Abbas, Mohamed I.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2015, 50 (05): : 209 - 219
  • [33] Ulam stability of fractional impulsive differential equations with Riemann-Liouville integral boundary conditions
    Mohamed I. Abbas
    Journal of Contemporary Mathematical Analysis, 2015, 50 : 209 - 219
  • [34] RIEMANN-LIOUVILLE FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH FRACTIONAL NONLOCAL MULTI-POINT BOUNDARY CONDITIONS
    Ahmad, Bashir
    Alghamdi, Badrah
    Agarwal, Ravi P.
    Alsaedi, Ahmed
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (01)
  • [35] Existence of solutions for Riemann-Liouville fractional differential equations with nonlocal Erdelyi-Kober integral boundary conditions on the half-line
    Thiramanus, Phollakrit
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    BOUNDARY VALUE PROBLEMS, 2015,
  • [36] Nonlinear fractional Caputo-Langevin equation with nonlocal Riemann-Liouville fractional integral conditions
    Weera Yukunthorn
    Sotiris K Ntouyas
    Jessada Tariboon
    Advances in Difference Equations, 2014
  • [37] Nonlinear fractional Caputo-Langevin equation with nonlocal Riemann-Liouville fractional integral conditions
    Yukunthorn, Weera
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [38] Existence Results for Fractional Evolution Systems with Riemann-Liouville Fractional Derivatives and Nonlocal Conditions
    Kalamani, P.
    Arjunan, M. Mallika
    Mallika, D.
    Baleanu, D.
    FUNDAMENTA INFORMATICAE, 2017, 151 (1-4) : 487 - 504
  • [39] On the existence of solutions for nonlocal sequential boundary fractional differential equations via ψ-Riemann-Liouville derivative
    Haddouchi, Faouzi
    Samei, Mohammad Esmael
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [40] Caputo Type Fractional Differential Equations with Nonlocal Riemann-Liouville and Erdelyi-Kober Type Integral Boundary Conditions
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    Alsaedi, Ahmed
    FILOMAT, 2017, 31 (14) : 4515 - 4529