Invariant correlational entropy and complexity of quantum states

被引:40
|
作者
Sokolov, VV [1 ]
Brown, BA
Zelevinsky, V
机构
[1] Budker Inst Nucl Phys, Novosibirsk 630090, Russia
[2] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[3] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA
关键词
D O I
10.1103/PhysRevE.58.56
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We define correlational (von Neumann) entropy for an individual quantum stale of a system whose time-independent Hamiltonian contains random parameters and is treated as a member of a statistical ensemble. This entropy is representation independent, and can be calculated as a trace functional of the density matrix which describes the system in its interaction with the noise source. We analyze perturbation theory in order to show the evolution from the pure state to the mixed one. Exactly solvable examples illustrate the use of correlational entropy as a measure of the degree of complexity in comparison with other available suggestions such as basis-dependent information entropy. It is shown in particular that a harmonic oscillator in a uniform field of random strength comes to a quasithermal equilibrium; we discuss the relation between effective temperature and canonical equilibrium temperature. The notion of correlational entropy is applied to a realistic numerical calculation in the framework of the nuclear shell model. in this system, which reveals generic signatures of quantum chaos, correlational entropy and information entropy calculated in the mean field basis display similar qualitative behavior.
引用
收藏
页码:56 / 68
页数:13
相关论文
共 50 条
  • [21] Entropy and Quantum Kolmogorov Complexity: A Quantum Brudno’s Theorem
    Fabio Benatti
    Tyll Krüger
    Markus Müller
    Rainer Siegmund-Schultze
    Arleta Szkoła
    Communications in Mathematical Physics, 2006, 265 : 437 - 461
  • [22] Wigner separability entropy and complexity of quantum dynamics
    Benenti, Giuliano
    Carlo, Gabriel G.
    Prosen, Tomaz
    PHYSICAL REVIEW E, 2012, 85 (05):
  • [23] Entropy and quantum Kolmogorov complexity:: A quantum Brudno's theorem
    Benatti, Fabio
    Krueger, Tyll
    Mueller, Markus
    Siegmund-Schultze, Rainer
    Szkola, Arleta
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 265 (02) : 437 - 461
  • [24] Optimality, entropy and complexity for nonextensive quantum scattering
    Ion, DB
    Ion, MLD
    CHAOS SOLITONS & FRACTALS, 2002, 13 (03) : 547 - 568
  • [25] Invariant Quantum States of Quadratic Hamiltonians
    Dodonov, Viktor V.
    ENTROPY, 2021, 23 (05)
  • [26] Measures of entropy and complexity in altered states of consciousness
    Mateos, D. M.
    Erra, R. Guevara
    Wennberg, R.
    Velazquez, J. L. Perez
    COGNITIVE NEURODYNAMICS, 2018, 12 (01) : 73 - 84
  • [27] Measures of entropy and complexity in altered states of consciousness
    D. M. Mateos
    R. Guevara Erra
    R. Wennberg
    J. L. Perez Velazquez
    Cognitive Neurodynamics, 2018, 12 : 73 - 84
  • [28] ON THE PRINCIPLE OF MINIMAL CORRELATIONAL ENTROPY
    LAVENDA, BH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (02): : 293 - 306
  • [29] Asymptotic relative entropy of entanglement for orthogonally invariant states
    Audenaert, K
    De Moor, B
    Vollbrecht, KGH
    Werner, RF
    PHYSICAL REVIEW A, 2002, 66 (03): : 323101 - 323111
  • [30] CLASSICAL ENTROPY OF QUANTUM STATES OF LIGHT
    ORLOWSKI, A
    PHYSICAL REVIEW A, 1993, 48 (01): : 727 - 731