Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage

被引:273
|
作者
Zhang, Weiping [1 ,2 ]
Maleki, Akbar [3 ]
Rosen, Marc A. [4 ]
Liu, Jingqing [5 ]
机构
[1] Nanchang Univ, Dept Elect Informat Engn, Nanchang, Jiangxi, Peoples R China
[2] Zhejiang Univ, Ind Technol Res Inst, Tianjin, Peoples R China
[3] Univ Tehran, Fac New Sci & Technol, Dept Renewable Energies, Tehran, Iran
[4] Univ Ontario, Inst Technol, Fac Engn & Appl Sci, Oshawa, ON L1H 7K4, Canada
[5] Zhejiang Univ, Coll Civil Engn & Architecture, Hangzhou, Zhejiang, Peoples R China
关键词
Energy storage; Hybrid energy system; Renewable energy; Optimal design; Simulated annealing; HARMONY SEARCH ALGORITHM; OSMOSIS DESALINATION SYSTEMS; POWER-SYSTEM; TECHNOECONOMIC ANALYSIS; ECONOMIC-ANALYSIS; SIZE OPTIMIZATION; GENETIC ALGORITHM; OPTIMAL-DESIGN; DIESEL SYSTEM; CELL SYSTEM;
D O I
10.1016/j.energy.2018.08.112
中图分类号
O414.1 [热力学];
学科分类号
摘要
Wind and solar energy based hybrid systems incorporating energy storage can often provide cost effective and reliable energy alternatives to the conventional systems commonly used by remote consumers. To integrate a high level of variable wind and solar energy, energy storage is important. The primary contribution made by the present article is the development of a new efficient methodology for modeling and optimally sizing a hybrid system for renewable energy considering two energy storage devices: hydrogen (as a form of chemical storage) and batteries (as a form of electrochemical storage). To optimize the decision variable values, modified versions of the simulated annealing algorithm-based chaotic search and harmony search are developed. This is dedicated to the optimization of the supply of residential electrical load via stand-alone hybrid energy systems, so as to achieve the minimum life cycle cost of the system by continuous and integer decision variables. The proposed modified approach is used to size optimally the components of six schemes for a remote area in Iran: wind/hydrogen, solar/hydrogen, solar/wind/hydrogen, wind/battery, solar/battery, and solar/wind/battery. To determine the methodology quality, the performance of the proposed hybrid algorithm is contrasted with that for simulated annealing and hybrid harmony search and simulated annealing algorithms. The optimization results demonstrate that a wind and solar energy based hybrid system with electrochemical storage offers more cost effective and reliable energy than a hybrid system for renewable energy with chemical storage. Also, among hybrid systems, the wind/battery system is clearly advantageous economically for supplying power. The portions of life cycle cost of the wind turbine, batteries, and converter/inverter are 67%, 5%, and 28%, respectively. The relative errors between the Mean index of are shown to be at most 11%. Finally, a comparison of the Min., Max., Mean, and Std. values, in the six hybrid systems, shows that the proposed hybrid algorithm is more robust than the others considered since it has lower index values. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:191 / 207
页数:17
相关论文
共 50 条
  • [41] Optimization of energy autonomy in buildings with renewable energy sources and battery storage
    Christodoulides, Paul
    Capuder, Tomislav
    Georgiou, Giorgos S.
    FRONTIERS IN ENERGY RESEARCH, 2024, 12
  • [42] An overview of battery energy storage system for renewable energy generation
    Chen, Z. (chenzh06@163.com), 2013, Automation of Electric Power Systems Press (37):
  • [43] Renewable Integration Algorithm to Compensate PV Power Using Battery Energy Storage System
    Lee, Hyung-Joo
    Choi, Jin-Young
    Park, Gun-Soo
    Oh, Kyo-Sun
    Won, Dong-Jun
    2017 6TH INTERNATIONAL YOUTH CONFERENCE ON ENERGY (IYCE), 2017,
  • [44] Long-term optimization based on PSO of a grid-connected renewable energy/battery/hydrogen hybrid system
    Garcia-Trivino, Pablo
    Llorens-Iborra, Francisco
    Garcia-Vazquez, Carlos A.
    Gil-Mena, Antonio J.
    Fernandez-Ramirez, Luis M.
    Jurado, Francisco
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (21) : 10805 - 10816
  • [45] Hybrid renewable energy applications in zero-energy buildings and communities integrating battery and hydrogen vehicle storage*
    Liu, Jia
    Chen, Xi
    Yang, Hongxing
    Shan, Kui
    APPLIED ENERGY, 2021, 290
  • [46] A Hybrid of Grey Wolf Optimization and Genetic Algorithm for Optimization of Hybrid Wind and Solar Renewable Energy System
    Geleta, Diriba Kajela
    Manshahia, Mukhdeep Singh
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2022, 10 (04) : 749 - 762
  • [47] Development method of Hybrid Energy Storage System, including PEM fuel cell and a battery
    Ustinov, A.
    Khayrullina, A.
    Borzenko, V.
    Khmelik, M.
    Sveshnikova, A.
    7TH EUROPEAN THERMAL-SCIENCES CONFERENCE (EUROTHERM2016), 2016, 745
  • [48] A hybrid differential evolution and simulated annealing algorithm for global optimization
    Yu, Xiaobing
    Liu, Zhenjie
    Wu, XueJing
    Wang, Xuming
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (01) : 1375 - 1391
  • [49] A Hybrid Harmony search and Simulated Annealing algorithm for continuous optimization
    Assad, Assif
    Deep, Kusum
    INFORMATION SCIENCES, 2018, 450 : 246 - 266
  • [50] Hybrid Whale Optimization Algorithm with simulated annealing for feature selection
    Mafarja, Majdi M.
    Mirjalili, Seyedali
    NEUROCOMPUTING, 2017, 260 : 302 - 312