Gradient Descent and Radial Basis Functions

被引:2
|
作者
Fernandez-Redondo, Mercedes [1 ]
Torres-Sospedra, Joaquin [1 ]
Hernandez-Espinosa, Carlos [1 ]
机构
[1] Univ Jaume 1, Dept Ingn & Ciencia Computadores, Castellon de La Plana, Spain
关键词
D O I
10.1007/11816157_45
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present experiments comparing different training algorithms for Radial Basis Functions (RBF) neural networks. In particular we compare the classical training which consists of an unsupervised training of centers followed by a supervised training of the weights at the output, with the full supervised training by gradient descent proposed recently in same papers. We conclude that a fully supervised training performs generally better. We also compare Batch training with Online training and we conclude that Online training suppose a reduction in the number of iterations.
引用
收藏
页码:391 / 396
页数:6
相关论文
共 50 条
  • [21] THE METHOD OF GRADIENT DESCENT FOR MINIMIZING NONCONVEX FUNCTIONS
    IZMAILOV, AF
    TRETYAKOV, AA
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1994, 34 (03) : 287 - 299
  • [22] Radial polynomials as alternatives to flat radial basis functions
    Pooladi, Fatemeh
    Hosseinzadeh, Hossein
    JOURNAL OF MATHEMATICAL MODELING, 2024, 12 (02): : 337 - 354
  • [23] GRADIENT BOUNDS FOR RADIAL MAXIMAL FUNCTIONS
    Carneiro, Emanuel
    Gonzalez-Riquelme, Cristian
    ANNALES FENNICI MATHEMATICI, 2021, 46 (01): : 495 - 521
  • [24] Framework for gradient integration by combining radial basis functions method and least-squares method
    Huang, Lei
    Asundi, Anand Krishna
    APPLIED OPTICS, 2013, 52 (24) : 6016 - 6021
  • [25] Educating local radial basis functions using the highest gradient of interest in three dimensional geometries
    Palacio-Betancur, Viviana
    Villada-Gil, Stiven
    de Pablo, Juan J.
    Hernandez-Ortiz, Juan P.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 110 (07) : 603 - 617
  • [26] Mesh deformation using radial basis functions for gradient-based aerodynamic shape optimization
    Jakobsson, S.
    Amoignon, O.
    COMPUTERS & FLUIDS, 2007, 36 (06) : 1119 - 1136
  • [27] Wavelets, fractals, and radial basis functions
    Blu, T
    Unser, M
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (03) : 543 - 553
  • [28] Radial Basis Functions: a Bayesian treatment
    Barber, D
    Schottky, B
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 10, 1998, 10 : 402 - 408
  • [29] Radial Basis Functions for Phase Unwrapping
    Villa Hernandez, Jesus
    de la Rosa Vargas, Ismael
    de la Rosa Miranda, Enrique
    COMPUTACION Y SISTEMAS, 2010, 14 (02): : 145 - 150
  • [30] Trefftz radial basis functions (TRBF)
    Kompis, V.
    Stiavnicky, M.
    Zmindak, M.
    Murcinkova, Z.
    PROCEEDINGS OF LSAME.08: LEUVEN SYMPOSIUM ON APPLIED MECHANICS IN ENGINEERING, PTS 1 AND 2, 2008, : 25 - 35