Real-time Visual Odometry for Autonomous MAV Navigation using RGB-D Camera

被引:0
|
作者
Wang, Jiefei [1 ]
Garratt, Matthew [1 ]
Anavatti, Sreenatha [1 ]
Lin, Shanggang [1 ]
机构
[1] Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT, Australia
关键词
FLOW;
D O I
暂无
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this paper, we present a visual odometry algorithm for a Micro Aerial Vehicle (MAV) navigation system using data fused from an RGB-D camera and an Inertial Measurement Unit (IMU). The Image Interpolation Algorithm (12A) is used to calculate optic flow from the RGB-D intensity image and egomotion is recovered by combining the range data with the optic flow field Image Jacobian. An Extended Kalman Filter (EKF) is used to fuse inertial data with the egomotion recovered from the RGB-D camera. By integrating the egomotion, estimation of the velocity and position of the quadrotor is obtained in three dimensional space. A Vicon Motion Tracking System provides the position measurement which is used as ground truth for analysing the system error. Based on experiments done in an indoor environment, the accuracy of the velocity and the position estimation is evaluated.
引用
收藏
页码:1353 / 1358
页数:6
相关论文
共 50 条
  • [21] Robust Real-time RGB-D Visual Odometry in Dynamic Environments via Rigid Motion Model
    Lee, Sangil
    Son, Clark Youngdong
    Kim, H. Jin
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 6891 - 6898
  • [22] Robust Visual Odometry to Irregular Illumination Changes with RGB-D camera
    Kim, Pyojin
    Lim, Hyon
    Kim, H. Jin
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 3688 - 3694
  • [23] Adaptive Visual Odometry Using RGB-D Cameras
    Fabian, Joshua R.
    Clayton, Garrett M.
    2014 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2014, : 1533 - 1538
  • [24] Dynamic RGB-D Visual Odometry
    Yang, Dongsheng
    Bi, Shusheng
    Cai, Yueri
    Zheng, Jingxiang
    Yuan, Chang
    2017 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (IEEE ROBIO 2017), 2017, : 941 - 946
  • [25] Plane-based Odometry using an RGB-D Camera
    Raposo, Carolina
    Lourenco, Miguel
    Barreto, Joao P.
    Antunes, Michel
    PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2013, 2013,
  • [26] RGB-D Odometry for Autonomous Lawn Mowing
    Ochman, Marcin
    Skoczen, Magda
    Krata, Damian
    Panek, Marcin
    Spyra, Krystian
    Pawlowski, Andrzej
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING (ICAISC 2021), PT II, 2021, 12855 : 81 - 90
  • [27] A Hybrid Real-Time Visual Tracking Using Compressive RGB-D Features
    Zhao, Mengyuan
    Luo, Heng
    Tafti, Ahmad P.
    Lin, Yuanchang
    He, Guotian
    ADVANCES IN VISUAL COMPUTING, PT I (ISVC 2015), 2015, 9474 : 561 - 573
  • [28] Real-time bi-directional people counting using an RGB-D camera
    Rahmaniar, Wahyu
    Wang, W. J.
    Chiu, Chi-Wei Ethan
    Hakim, Noorkholis Luthfil Luthfil
    SENSOR REVIEW, 2021, 41 (04) : 341 - 349
  • [29] Optimized Method for Real-time Texture Reconstruction with RGB-D Camera
    Yonghong Hou
    Hang Li
    Chuankun Liu
    Liang Zhang
    Transactions of Tianjin University, 2017, (05) : 493 - 500
  • [30] Real-Time System for Driver Fatigue Detection by RGB-D Camera
    Zhang, Liyan
    Liu, Fan
    Tang, Jinhui
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2015, 6 (02)