Real-time Visual Odometry for Autonomous MAV Navigation using RGB-D Camera

被引:0
|
作者
Wang, Jiefei [1 ]
Garratt, Matthew [1 ]
Anavatti, Sreenatha [1 ]
Lin, Shanggang [1 ]
机构
[1] Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT, Australia
关键词
FLOW;
D O I
暂无
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this paper, we present a visual odometry algorithm for a Micro Aerial Vehicle (MAV) navigation system using data fused from an RGB-D camera and an Inertial Measurement Unit (IMU). The Image Interpolation Algorithm (12A) is used to calculate optic flow from the RGB-D intensity image and egomotion is recovered by combining the range data with the optic flow field Image Jacobian. An Extended Kalman Filter (EKF) is used to fuse inertial data with the egomotion recovered from the RGB-D camera. By integrating the egomotion, estimation of the velocity and position of the quadrotor is obtained in three dimensional space. A Vicon Motion Tracking System provides the position measurement which is used as ground truth for analysing the system error. Based on experiments done in an indoor environment, the accuracy of the velocity and the position estimation is evaluated.
引用
收藏
页码:1353 / 1358
页数:6
相关论文
共 50 条
  • [1] Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera
    Huang, Albert S.
    Bachrach, Abraham
    Henry, Peter
    Krainin, Michael
    Maturana, Daniel
    Fox, Dieter
    Roy, Nicholas
    ROBOTICS RESEARCH, ISRR, 2017, 100
  • [2] Real-Time Visual Odometry from Dense RGB-D Images
    Steinbruecker, Frank
    Sturm, Juergen
    Cremers, Daniel
    2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCV WORKSHOPS), 2011,
  • [3] Robust Real-Time Visual Odometry for Dense RGB-D Mapping
    Whelan, Thomas
    Johannsson, Hordur
    Kaess, Michael
    Leonard, John J.
    McDonald, John
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 5724 - 5731
  • [4] A Novel Hybrid Visual Odometry Using an RGB-D Camera
    Wang, Huiguo
    Wu, Xinyu
    Chen, Zhiheng
    He, Yong
    PROCEEDINGS 2018 33RD YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2018, : 47 - 51
  • [5] Sparse Edge Visual Odometry using an RGB-D Camera
    Hsu, Jhih-Lei
    Lin, Huei-Yung
    2017 11TH ASIAN CONTROL CONFERENCE (ASCC), 2017, : 964 - 969
  • [6] Visual Odometry using RGB-D Camera on Ceiling Vision
    Wang, Han
    Mou, Wei
    Suratno, Hendra
    Seet, Gerald
    Li, Maohai
    Lau, M. W. S.
    Wang, Danwei
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO 2012), 2012,
  • [7] An evaluation of real-time RGB-D visual odometry algorithms on mobile devices
    Vincent Angladon
    Simone Gasparini
    Vincent Charvillat
    Tomislav Pribanić
    Tomislav Petković
    Matea Ðonlić
    Benjamin Ahsan
    Frédéric Bruel
    Journal of Real-Time Image Processing, 2019, 16 : 1643 - 1660
  • [8] An evaluation of real-time RGB-D visual odometry algorithms on mobile devices
    Angladon, Vincent
    Gasparini, Simone
    Charvillat, Vincent
    Pribanic, Tomislav
    Petkovic, Tomislav
    Donlic, Matea
    Ahsan, Benjamin
    Bruel, Frederic
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2019, 16 (05) : 1643 - 1660
  • [9] Real-time Onboard 6DoF Localization of an Indoor MAV in Degraded Visual Environments Using a RGB-D Camera
    Fang, Zheng
    Scherer, Sebastian
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 5253 - 5259
  • [10] Real-Time RGB-D Camera Relocalization
    Glocker, Ben
    Izadi, Shahram
    Shotton, Jamie
    Criminisi, Antonio
    2013 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR) - SCIENCE AND TECHNOLOGY, 2013, : 173 - 179