Ensemble data assimilation in the Red Sea: sensitivity to ensemble selection and atmospheric forcing
被引:26
|
作者:
Toye, Habib
论文数: 0引用数: 0
h-index: 0
机构:
KAUST, Div Comp Elect & Math Sci & Engn, Thuwal, Saudi ArabiaKAUST, Div Comp Elect & Math Sci & Engn, Thuwal, Saudi Arabia
Toye, Habib
[1
]
Zhan, Peng
论文数: 0引用数: 0
h-index: 0
机构:
KAUST, Div Phys Sci & Engn, Thuwal, Saudi ArabiaKAUST, Div Comp Elect & Math Sci & Engn, Thuwal, Saudi Arabia
Zhan, Peng
[2
]
Gopalakrishnan, Ganesh
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USAKAUST, Div Comp Elect & Math Sci & Engn, Thuwal, Saudi Arabia
Gopalakrishnan, Ganesh
[3
]
Kartadikaria, Aditya R.
论文数: 0引用数: 0
h-index: 0
机构:
KAUST, Div Phys Sci & Engn, Thuwal, Saudi Arabia
Bandung Inst Technol, Study Program Oceanog, Bandung, IndonesiaKAUST, Div Comp Elect & Math Sci & Engn, Thuwal, Saudi Arabia
Kartadikaria, Aditya R.
[2
,4
]
Huang, Huang
论文数: 0引用数: 0
h-index: 0
机构:
KAUST, Div Comp Elect & Math Sci & Engn, Thuwal, Saudi ArabiaKAUST, Div Comp Elect & Math Sci & Engn, Thuwal, Saudi Arabia
Huang, Huang
[1
]
Knio, Omar
论文数: 0引用数: 0
h-index: 0
机构:
KAUST, Div Comp Elect & Math Sci & Engn, Thuwal, Saudi ArabiaKAUST, Div Comp Elect & Math Sci & Engn, Thuwal, Saudi Arabia
Knio, Omar
[1
]
Hoteit, Ibrahim
论文数: 0引用数: 0
h-index: 0
机构:
KAUST, Div Comp Elect & Math Sci & Engn, Thuwal, Saudi Arabia
KAUST, Div Phys Sci & Engn, Thuwal, Saudi ArabiaKAUST, Div Comp Elect & Math Sci & Engn, Thuwal, Saudi Arabia
Hoteit, Ibrahim
[1
,2
]
机构:
[1] KAUST, Div Comp Elect & Math Sci & Engn, Thuwal, Saudi Arabia
[2] KAUST, Div Phys Sci & Engn, Thuwal, Saudi Arabia
[3] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
[4] Bandung Inst Technol, Study Program Oceanog, Bandung, Indonesia
We present our efforts to build an ensemble data assimilation and forecasting system for the Red Sea. The system consists of the high-resolution Massachusetts Institute of Technology general circulation model (MITgcm) to simulate ocean circulation and of the Data Research Testbed (DART) for ensemble data assimilation. DART has been configured to integrate all members of an ensemble adjustment Kalman filter (EAKF) in parallel, based on which we adapted the ensemble operations in DART to use an invariant ensemble, i.e., an ensemble Optimal Interpolation (EnOI) algorithm. This approach requires only single forward model integration in the forecast step and therefore saves substantial computational cost. To deal with the strong seasonal variability of the Red Sea, the EnOI ensemble is then seasonally selected from a climatology of long-term model outputs. Observations of remote sensing sea surface height (SSH) and sea surface temperature (SST) are assimilated every 3 days. Real-time atmospheric fields from the National Center for Environmental Prediction (NCEP) and the European Center for Medium-Range Weather Forecasts (ECMWF) are used as forcing in different assimilation experiments. We investigate the behaviors of the EAKF and (seasonal-) EnOI and compare their performances for assimilating and forecasting the circulation of the Red Sea. We further assess the sensitivity of the assimilation system to various filtering parameters (ensemble size, inflation) and atmospheric forcing.
机构:
MIT, Ralph M Parsons Lab, Dept Civil & Environm Engn, Cambridge, MA 02139 USAMIT, Ralph M Parsons Lab, Dept Civil & Environm Engn, Cambridge, MA 02139 USA
Reichle, RH
McLaughlin, DB
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Ralph M Parsons Lab, Dept Civil & Environm Engn, Cambridge, MA 02139 USAMIT, Ralph M Parsons Lab, Dept Civil & Environm Engn, Cambridge, MA 02139 USA
McLaughlin, DB
Entekhabi, D
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Ralph M Parsons Lab, Dept Civil & Environm Engn, Cambridge, MA 02139 USAMIT, Ralph M Parsons Lab, Dept Civil & Environm Engn, Cambridge, MA 02139 USA