Clustering and finding the number of clusters by unsupervised learning of mixture models using vector quantization

被引:0
|
作者
Yoon, Sangho [1 ]
Gray, Robert M. [1 ]
机构
[1] Stanford Univ, Informat Syst Lab, Elect Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
clustering; vector quantization; mixture models;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A new Lagrangian formulation with entropy and codebook size was proposed to extend the Lagrangian formulation of variable-rate vector quantization. We use the new Lagrangian formulation to perform clustering and to find the number of clusters by fitting mixture models to data using vector quantization. Experimental results show that the entropy and memory constrained vector quantization outperforms the state-of-the art model selection algorithms in the examples considered.
引用
收藏
页码:1081 / +
页数:2
相关论文
共 50 条
  • [31] Unsupervised learning of arbitrarily shaped clusters using ensembles of Gaussian models
    Frigui, H
    PATTERN ANALYSIS AND APPLICATIONS, 2005, 8 (1-2) : 32 - 49
  • [32] GMCM: Unsupervised Clustering and Meta-Analysis Using Gaussian Mixture Copula Models
    Bilgrau, Anders E.
    Eriksen, Poul S.
    Rasmussen, Jakob G.
    Johnsen, Hans E.
    Dybkaer, Karen
    Bogsted, Martin
    JOURNAL OF STATISTICAL SOFTWARE, 2016, 70 (02): : 1 - 23
  • [33] Learning vector quantization: Cluster size and cluster number
    Borgelt, C
    Girimonte, D
    Acciani, G
    2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 5, PROCEEDINGS, 2004, : 808 - 811
  • [34] An Intelligent System for Clustering Using Hybridization of Distance Function in Learning Vector Quantization Algorithm
    Vashistha, Ritu
    Nagar, Shirish
    PROCEEDINGS OF THE 2017 IEEE SECOND INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND COMMUNICATION TECHNOLOGIES (ICECCT), 2017,
  • [35] Soft learning vector quantization and clustering algorithms based on reformulation
    Karayiannis, NB
    1998 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AT THE IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE - PROCEEDINGS, VOL 1-2, 1998, : 1441 - 1446
  • [36] Optimization of deep learning models for the prediction of gene mutations using unsupervised clustering
    Chen, Zihan
    Li, Xingyu
    Yang, Miaomiao
    Zhang, Hong
    Xu, Xu Steven
    JOURNAL OF PATHOLOGY CLINICAL RESEARCH, 2023, 9 (01): : 3 - 17
  • [37] Improving collaborative recommendations using vector quantization and clustering
    Boroujeni, Farsad Zamani
    Behnia, Mohammad
    Jahangard, Simindokht
    SOCIAL NETWORK ANALYSIS AND MINING, 2016, 6 (01)
  • [38] Vector quantization of images using a fuzzy clustering method
    Lee, Wan-Jui
    Chung, Jun-Shih
    Ouyang, Chen-Sen
    Lee, Shie-Jue
    CYBERNETICS AND SYSTEMS, 2008, 39 (01) : 45 - 60
  • [39] An algorithm for unsupervised learning and optimization of finite mixture models
    Abas, Ahmed R.
    EGYPTIAN INFORMATICS JOURNAL, 2011, 12 (01) : 19 - 27
  • [40] Predicting Number of Vehicles Involved in Rural Crashes Using Learning Vector Quantization Algorithm
    Haghshenas, Sina Shaffiee
    Guido, Giuseppe
    Haghshenas, Sami Shaffiee
    Astarita, Vittorio
    AI, 2024, 5 (03) : 1095 - 1110