On the Supersymmetric Spectra of two Planar Integrable Quantum Systems

被引:3
|
作者
Gonzalez Leon, M. A. [1 ,2 ]
Mateos Guilarte, J. [2 ,3 ]
Senosiain, M. J. [2 ,3 ]
de la Torre Mayado, M. [4 ]
机构
[1] Univ Salamanca, Dept Matemat Aplicada, Salamanca, Spain
[2] Univ Salamanca, IUFFyM, Salamanca, Spain
[3] Univ Salamanca, Dept Fis, Salamanca, Spain
[4] Univ Salamanca, Dept Matemat, Salamanca, Spain
关键词
Supersymmetric quantum mechanics; One Coulombian center of force; Two Coulombian centers of force; Schrodinger equation separability; Razavy and Whittaker-Hill equations; CLASSICAL MECHANICS; ORTHOGONAL POLYNOMIALS; SCHRODINGER-EQUATION; MODELS; POTENTIALS; SEPARATION; VARIABLES; BREAKING; CENTERS;
D O I
10.1090/conm/563/11165
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two planar supersymmetric quantum mechanical systems built around the quantum integrable Kepler/Coulomb and Euler/Coulomb problems are analyzed in depth. The supersymmetric spectra of both systems are unveiled, profiting from symmetry operators not related to invariance with respect to rotations. It is shown analytically how the first problem arises at the limit of zero distance between the centers of the second problem. It appears that the supersymmetric modified Euler/Coulomb problem is a quasi-isospectral deformation of the supersymmetric Kepler/Coulomb problem.
引用
收藏
页码:73 / +
页数:4
相关论文
共 50 条
  • [21] Two-photon spectra of quantum systems
    del Valle, E.
    Gonzalez-Tudela, A.
    Laussy, F. P.
    Tejedor, C.
    Hartmann, M. J.
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE AND INTERNATIONAL QUANTUM ELECTRONICS CONFERENCE (CLEO EUROPE/IQEC), 2013,
  • [22] Supersymmetric biorthogonal quantum systems
    Curtright, Thomas
    Mezincescu, Luca
    Schuster, David
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (09)
  • [23] Admittance of planar two-terminal quantum systems
    Wulf, U.
    Racec, P. N.
    Racec, E. R.
    PHYSICAL REVIEW B, 2007, 75 (07):
  • [24] Integrable quantum Stackel systems
    Blaszak, Maciej
    Domanski, Ziemowit
    Sergyeyev, Artur
    Szablikowski, Blazej M.
    PHYSICS LETTERS A, 2013, 377 (38) : 2564 - 2572
  • [25] Integrable Systems and Quantum Deformations
    Koroteev, Peter
    Beisert, Niklas
    INTERSECTIONS OF PARTICLE AND NUCLEAR PHYSICS, 2009, 1182 : 513 - +
  • [26] Quantum monodromy in integrable systems
    Ngoc, SV
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 203 (02) : 465 - 479
  • [27] Topics in quantum integrable systems
    Hikami, K
    Wadati, M
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (08) : 3569 - 3594
  • [28] Quantum Monodromy in Integrable Systems
    San Vũ Ngoc
    Communications in Mathematical Physics, 1999, 203 : 465 - 479
  • [29] Integrable systems and quantum groups
    Roditi, I
    BRAZILIAN JOURNAL OF PHYSICS, 2000, 30 (02) : 357 - 361
  • [30] Applications of quantum integrable systems
    Castro-Alvaredo, OA
    Fring, A
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2004, 19 : 92 - 116