Deep Learning-Based Gait Recognition Using Smartphones in the Wild

被引:141
|
作者
Zou, Qin [1 ]
Wang, Yanling [2 ]
Wang, Qian [2 ]
Zhao, Yi [1 ]
Li, Qingquan [3 ]
机构
[1] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Sch Cyber Sci & Engn, Wuhan 430079, Peoples R China
[3] Shenzhen Univ, Shenzhen Key Lab Spatial Smart Sensing & Serv, Shenzhen 518060, Peoples R China
关键词
Gait recognition; Sensors; Smart phones; Legged locomotion; Authentication; Time series analysis; inertial sensor; person identification; convolutional neural network; recurrent neural network; PERFORMANCE EVALUATION; AUTHENTICATION; ACCELEROMETER; SEQUENCES; IDENTITY; DATABASE; PATTERN;
D O I
10.1109/TIFS.2020.2985628
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Compared to other biometrics, gait is difficult to conceal and has the advantage of being unobtrusive. Inertial sensors, such as accelerometers and gyroscopes, are often used to capture gait dynamics. These inertial sensors are commonly integrated into smartphones and are widely used by the average person, which makes gait data convenient and inexpensive to collect. In this paper, we study gait recognition using smartphones in the wild. In contrast to traditional methods, which often require a person to walk along a specified road and/or at a normal walking speed, the proposed method collects inertial gait data under unconstrained conditions without knowing when, where, and how the user walks. To obtain good person identification and authentication performance, deep-learning techniques are presented to learn and model the gait biometrics based on walking data. Specifically, a hybrid deep neural network is proposed for robust gait feature representation, where features in the space and time domains are successively abstracted by a convolutional neural network and a recurrent neural network. In the experiments, two datasets collected by smartphones for a total of 118 subjects are used for evaluations. The experiments show that the proposed method achieves higher than 93.5% and 93.7% accuracies in person identification and authentication, respectively.
引用
收藏
页码:3197 / 3212
页数:16
相关论文
共 50 条
  • [21] Deep Learning-Based Named Entity Recognition System Using Hybrid Embedding
    Goyal, Archana
    Gupta, Vishal
    Kumar, Manish
    CYBERNETICS AND SYSTEMS, 2024, 55 (02) : 279 - 301
  • [22] Deep Learning-Based Trees Disease Recognition and Classification Using Hyperspectral Data
    Bhatti, Uzair Aslam
    Bazai, Sibghat Ullah
    Hussain, Shumaila
    Fakhar, Shariqa
    Ku, Chin Soon
    Marjan, Shah
    Yee, Por Lip
    Jing, Liu
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (01): : 681 - 697
  • [23] Deep Learning-Based Driver Activity Recognition Using Diverse Driver Profiles
    Obaid, Surayya
    Bawany, Narmeen Zakaria
    Tahzeeb, Shahab
    Qamar, Tehreem
    Mughal, Muhammad Hussain
    IEEE ACCESS, 2024, 12 : 187192 - 187209
  • [24] A Deep Learning-Based Satellite Target Recognition Method Using Radar Data
    Lu, Wang
    Zhang, Yasheng
    Xu, Can
    Lin, Caiyong
    Huo, Yurong
    SENSORS, 2019, 19 (09)
  • [25] Deep Learning-based Fast Hand Gesture Recognition using Representative Frames
    John, Vijay
    Boyali, Ali
    Mita, Seiichi
    Imanishi, Masayuki
    Sanma, Norio
    2016 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2016, : 31 - 38
  • [26] Deep Learning-Based Human Recognition Through the Wall using UWB radar
    Assawaroongsakul, Pongpol
    Khumdee, Mawin
    Phasukkit, Pattarapong
    Houngkamhang, Nongluck
    16TH INTERNATIONAL JOINT SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND NATURAL LANGUAGE PROCESSING (ISAI-NLP 2021), 2021,
  • [27] deepGesture: Deep learning-based gesture recognition scheme using motion sensors
    Kim, Ji-Hae
    Hong, Gwang-Soo
    Kim, Byung-Gyu
    Dogra, Debi P.
    DISPLAYS, 2018, 55 : 38 - 45
  • [28] Sample Balancing for Deep Learning-Based Visual Recognition
    Chen, Xin
    Weng, Jian
    Luo, Weiqi
    Lu, Wei
    Wu, Huimin
    Xu, Jiaming
    Tian, Qi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (10) : 3962 - 3976
  • [29] Deep learning-based image recognition for autonomous driving
    Fujiyoshi, Hironobu
    Hirakawa, Tsubasa
    Yamashita, Takayoshi
    IATSS RESEARCH, 2019, 43 (04) : 244 - 252
  • [30] A Review on Deep Learning-based Face Recognition Techniques
    Padma Suresh, L.
    Anil, J.
    2023 Innovations in Power and Advanced Computing Technologies, i-PACT 2023, 2023,