TIME BOUNDARY TERMS AND DIRAC CONSTRAINTS

被引:0
|
作者
Gallardo, Alejandro [1 ]
机构
[1] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Mexico City 07360, DF, Mexico
来源
关键词
Constrained systems; canonical formalism; boundary conditions; GAUGE-INVARIANCE; MODELS;
D O I
10.1142/S0217751X12500583
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Time boundary terms usually added to action principles are systematically handled in the framework of Dirac's canonical analysis. The procedure begins with the introduction of the boundary term into the integral Hamiltonian action and then the resulting action is interpreted as a Lagrangian one to which Dirac's method is applied. Once the general theory is developed, the current procedure is implemented and illustrated in various examples which are originally endowed with different types of constraints.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] CLASSIFICATION OF TERMS INVOLVED IN A DIRAC OPERATOR - ALTERNATIVE
    ROUX, JF
    LETTERE AL NUOVO CIMENTO, 1977, 20 (01): : 39 - 40
  • [32] Set constraints on regular terms
    Rychlikowski, P
    Truderung, T
    COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2004, 3210 : 458 - 472
  • [33] First Boundary Dirac Eigenvalue and Boundary Capacity Potential
    Simon Raulot
    Annales Henri Poincaré, 2023, 24 : 1245 - 1264
  • [34] First Boundary Dirac Eigenvalue and Boundary Capacity Potential
    Raulot, Simon
    ANNALES HENRI POINCARE, 2023, 24 (04): : 1245 - 1264
  • [35] The self-coupled Einstein-Cartan-Dirac equations in terms of Dirac bilinears
    Inglis, S. M.
    Jarvis, P. D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (04)
  • [36] AN EXTENSION OF THE DIRAC AND GOTAY-NESTER THEORIES OF CONSTRAINTS FOR DIRAC DYNAMICAL SYSTEMS
    Cendra, Hernan
    Etchechoury, Maria
    Ferraro, Sebastian J.
    JOURNAL OF GEOMETRIC MECHANICS, 2014, 6 (02): : 167 - 236
  • [37] Determinants, manifolds with boundary and Dirac operators
    Wojciechowski, KP
    Scott, SG
    Morchio, G
    Booss-Bavnbek, B
    CLIFFORD ALGEBRAS AND THEIR APPLICATION IN MATHEMATICAL PHYSICS, 1998, 94 : 423 - 432
  • [38] Eigenvalue Boundary Problems for the Dirac Operator
    Oussama Hijazi
    Sebastián Montiel
    Antonio Roldán
    Communications in Mathematical Physics, 2002, 231 : 375 - 390
  • [39] Global boundary conditions for the Dirac operator
    Falomir, H
    TRENDS IN THEORETICAL PHYSICS - CERN-SANTIAGO DE COMPOSTELA-LA PLATA MEETING, 1998, (419): : 238 - 250
  • [40] Eigenvalues of the Dirac Operator on Manifolds¶with Boundary
    Oussama Hijazi
    Sebastián Montiel
    Xiao Zhang
    Communications in Mathematical Physics, 2001, 221 : 255 - 265