Identification and control of nonlinear systems by a dissimilation particle swarm optimization-based Elman neural network

被引:37
|
作者
Ge, Hong-Wei [1 ]
Qian, Feng [1 ]
Liang, Yan-Chun [2 ,3 ]
Du, Wen-li [1 ]
Wang, Lu [2 ]
机构
[1] E China Univ Sci & Technol, Automat Inst, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
[2] Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China
[3] Inst High Performance Comp, Singapore 117528, Singapore
基金
中国国家自然科学基金;
关键词
dynamic recurrent neural network; particle swarm optimization; nonlinear system identification; system control; ultrasonic motor;
D O I
10.1016/j.nonrwa.2007.03.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first present a learning algorithm for dynamic recurrent Elman neural networks based on a dissimilation particle swarm optimization. The proposed algorithm computes concurrently both the evolution of network structure, weights, initial inputs of the context units, and self-feedback coefficient of the modified Elman network. Thereafter. we introduce and discuss a novel control method based on the proposed algorithm. More specifically, a dynamic identifier is constructed to perform speed identification and a controller is designed to perform speed control for Ultrasonic Motors (USM). Numerical experiments show that the novel identifier and controller based on the proposed algorithm can both achieve higher convergence precision and speed than other state-of-the-art algorithms. In particular, our experiments show that the identifier can approximate the USM's nonlinear input-output mapping accurately. The effectiveness of the controller is verified using different kinds of speeds of constant, step, and sinusoidal types. Besides, a preliminary examination on a randomly perturbation also shows the robust characteristics of the two proposed models. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1345 / 1360
页数:16
相关论文
共 50 条
  • [31] Short-Term Wind Power Forecasting Based on Elman Neural Network with Particle Swarm Optimization
    Xu, Lei
    Mao, Jiandong
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 2678 - 2681
  • [32] An Improved Particle Swarm Optimization-Based Coverage Control Method for Wireless Sensor Network
    Du, Huimin
    Ni, Qingjian
    Pan, Qianqian
    Yao, Yiyun
    Lv, Qing
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2014, PT II, 2014, 8795 : 114 - 124
  • [33] Elman Neural Network with Customized Particle Swarm Optimization for Hydraulic Pitch Control Strategy of Offshore Wind Turbine
    Narayanan, Valayapathy Lakshmi
    Narayan, Jyotindra
    Dhaked, Dheeraj Kumar
    Telmoudi, Achraf Jabeur
    PROCESSES, 2025, 13 (03)
  • [34] A Particle Swarm Optimization-based Neural Network for Detecting Nocturnal Hypoglycemia Using Electroencephalography Signals
    Nguyen, Lien B.
    Nguyen, Anh V.
    Ling, Sai Ho
    Nguyen, Hung T.
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [35] AN RFID INDOOR POSITIONING SYSTEM BY USING PARTICLE SWARM OPTIMIZATION-BASED ARTIFICIAL NEURAL NETWORK
    Wang, Changzhi
    Shi, Zhicai
    Wu, Fei
    Zhang, Juan
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), 2016, : 738 - 742
  • [36] The Application of Particle Swarm Optimization-based RBF Neural Network in Fault Diagnosis of Power Transformer
    Niu, Wu
    Xu, Liang-fa
    Wu, Ji-lin
    2009 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 2, 2009, : 534 - +
  • [37] Improved Particle Swarm Optimization-Based Artificial Neural Network for Rainfall-Runoff Modeling
    Asadnia, Mohsen
    Chua, Lloyd H. C.
    Qin, X. S.
    Talei, Amin
    JOURNAL OF HYDROLOGIC ENGINEERING, 2014, 19 (07) : 1320 - 1329
  • [38] Particle swarm optimization-based neural network model for short-term load forecasting
    Lu, Ning
    Zhou, Jian-Zhong
    He, Yao-Yao
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2010, 38 (12): : 65 - 68
  • [39] Particle Swarm Optimization-based Functional Link Artificial Neural Network for Medical Image Denoising
    Kumar, Manish
    Mishra, Sudhansu Kumar
    COMPUTATIONAL VISION AND ROBOTICS, 2015, 332 : 105 - 111
  • [40] Adaptive particle swarm optimization-based deep neural network for productivity enhancement of solar still
    Victor, Winstor Jebakumar Suthagar Durairaj
    Somasundaram, Dharmalingam
    Gnanadason, Koilraj
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (17) : 24802 - 24815