Numerical Investigations on Several Stabilized Finite Element Methods for the Stokes Eigenvalue Problem

被引:26
|
作者
Huang, Pengzhan [1 ]
He, Yinnian [1 ,2 ]
Feng, Xinlong [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Xi An Jiao Tong Univ, Fac Sci, Xian 710049, Peoples R China
基金
中国博士后科学基金; 国家高技术研究发展计划(863计划);
关键词
APPROXIMATION; EXTRAPOLATION;
D O I
10.1155/2011/745908
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Several stabilized finite element methods for the Stokes eigenvalue problem based on the lowest equal-order finite element pair are numerically investigated. They are penalty, regular, multiscale enrichment, and local Gauss integration method. Comparisons between them are carried out, which show that the local Gauss integration method has good stability, efficiency, and accuracy properties, and it is a favorite method among these methods for the Stokes eigenvalue problem.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] A Stabilized Finite Element Method for the Stokes-Stokes Coupling Interface Problem
    Shahid Hussain
    Md. Abdullah Al Mahbub
    Feng Shi
    Journal of Mathematical Fluid Mechanics, 2022, 24
  • [42] An adaptive stabilized finite element method for the generalized Stokes problem
    Araya, Rodolfo
    Barrenechea, Gabriel R.
    Poza, Abner
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 214 (02) : 457 - 479
  • [43] A Stabilized Finite Element Method for the Stokes-Stokes Coupling Interface Problem
    Hussain, Shahid
    Al Mahbub, Md Abdullah
    Shi, Feng
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (03)
  • [44] AN ABSOLUTELY STABILIZED FINITE-ELEMENT METHOD FOR THE STOKES PROBLEM
    DOUGLAS, J
    WANG, JP
    MATHEMATICS OF COMPUTATION, 1989, 52 (186) : 495 - 508
  • [45] An unusual stabilized finite element method for a generalized stokes problem
    Barrenechea G.R.
    Valentin F.
    Numerische Mathematik, 2002, 92 (4) : 653 - 673
  • [46] An unusual stabilized finite element method for a generalized Stokes problem
    Barrenechea, GR
    Valentin, F
    NUMERISCHE MATHEMATIK, 2002, 92 (04) : 653 - 677
  • [47] Pressure stabilized finite element approximation for the generalized stokes problem
    Nafa, K
    ICNAAM 2004: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2004, 2004, : 280 - 282
  • [48] Adaptive finite element methods for the Laplace eigenvalue problem
    Hoppe, R. H. W.
    Wu, H.
    Zhang, Z.
    JOURNAL OF NUMERICAL MATHEMATICS, 2010, 18 (04) : 281 - 302
  • [49] Two-level stabilized finite element methods for the steady Navier-Stokes problem
    He, YN
    Li, KT
    COMPUTING, 2005, 74 (04) : 337 - 351
  • [50] Refined mixed finite element methods for the Stokes problem
    ElBouzid, H
    Nicaise, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (11): : 1075 - 1080