Effect of manganese ions on ethanol fermentation by xylose isomerase expressing Saccharomyces cerevisiae under acetic acid stress

被引:25
|
作者
Ko, Ja Kyong [1 ]
Um, Youngsoon [1 ,2 ]
Lee, Sun-Mi [1 ,2 ]
机构
[1] Korea Inst Sci & Technol, Clean Energy Res Ctr, Seoul 02792, South Korea
[2] Korea Univ Sci & Technol, Clean Energy & Chem Engn, Daejeon 34113, South Korea
关键词
Acetic acid; Manganese ion; Saccharomyces cerevisiae; Xylose fermentation; Xylose isomerase; GENETICALLY-ENGINEERED STRAIN; INHIBITORY COMPOUNDS; CALCIUM-ION; TOLERANCE; YEAST; ZINC; ADAPTATION; GLUCOSE; GROWTH; PH;
D O I
10.1016/j.biortech.2016.09.130
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The efficient fermentation of lignocellulosic hydrolysates in the presence of inhibitors is highly desirable for bioethanol production. Among the inhibitors, acetic acid released during the pretreatment of lignocellulose negatively affects the fermentation performance of biofuel producing organisms. In this study, we evaluated the inhibitory effects of acetic acid on glucose and xylose fermentation by a high performance engineered strain of xylose utilizing Saccharomyces cerevisiae, SXA-R2P-E, harboring a xylose isomerase based pathway. The presence of acetic acid severely decreased the xylose fermentation performance of this strain. However, the acetic acid stress was alleviated by metal ion supplementation resulting in a 52% increased ethanol production rate under 2 g/L of acetic acid stress. This study shows the inhibitory effect of acetic acid on an engineered isomerase-based xylose utilizing strain and suggests a simple but effective method to improve the co-fermentation performance under acetic acid stress for efficient bioethanol production. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:422 / 430
页数:9
相关论文
共 50 条
  • [31] Expression of bacterial xylose isomerase in Saccharomyces cerevisiae under galactose supplemented condition
    Park, Ju-Yong
    Park, Dong Jun
    Chung, Bong-Woo
    Min, Jiho
    BIOTECHNOLOGY AND BIOPROCESS ENGINEERING, 2013, 18 (03) : 528 - 532
  • [32] Expression of bacterial xylose isomerase in Saccharomyces cerevisiae under galactose supplemented condition
    Ju-Yong Park
    Dong Jun Park
    Bong-Woo Chung
    Jiho Min
    Biotechnology and Bioprocess Engineering, 2013, 18 : 528 - 532
  • [33] Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway
    Bettiga, Maurizio
    Bengtsson, Oskar
    Hahn-Hagerdal, Barbel
    Gorwa-Grauslund, Marie F.
    MICROBIAL CELL FACTORIES, 2009, 8
  • [34] Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway
    Maurizio Bettiga
    Oskar Bengtsson
    Bärbel Hahn-Hägerdal
    Marie F Gorwa-Grauslund
    Microbial Cell Factories, 8
  • [35] Screening and evolution of a novel protist xylose isomerase from the termite Reticulitermes speratus for efficient xylose fermentation in Saccharomyces cerevisiae
    Satoshi Katahira
    Nobuhiko Muramoto
    Shigeharu Moriya
    Risa Nagura
    Nobuki Tada
    Noriko Yasutani
    Moriya Ohkuma
    Toru Onishi
    Kenro Tokuhiro
    Biotechnology for Biofuels, 10
  • [36] Screening and evolution of a novel protist xylose isomerase from the termite Reticulitermes speratus for efficient xylose fermentation in Saccharomyces cerevisiae
    Katahira, Satoshi
    Muramoto, Nobuhiko
    Moriya, Shigeharu
    Nagura, Risa
    Tada, Nobuki
    Yasutani, Noriko
    Ohkuma, Moriya
    Onishi, Toru
    Tokuhiro, Kenro
    BIOTECHNOLOGY FOR BIOFUELS, 2017, 10
  • [37] High-level functional expression of a fungal xylose isomerase:: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?
    Kuyper, M
    Harhangi, HR
    Stave, AK
    Winkler, AA
    Jetten, MSM
    de Laat, WTAM
    den Ridder, JJJ
    Op den Camp, HJM
    van Dijken, JP
    Pronk, JT
    FEMS YEAST RESEARCH, 2003, 4 (01) : 69 - 78
  • [38] Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters
    Goncalves, Davi L.
    Matsushika, Akinori
    de Sales, Belisa B.
    Goshima, Tetsuya
    Bon, Elba P. S.
    Stambuk, Boris U.
    ENZYME AND MICROBIAL TECHNOLOGY, 2014, 63 : 13 - 20
  • [39] Improvement of Xylose Fermentation Ability under Heat and Acid Co-Stress in Saccharomyces cerevisiae Using Genome Shuffling Technique
    Inokuma, Kentaro
    Iwamoto, Ryo
    Bamba, Takahiro
    Hasunuma, Tomohisa
    Kondo, Akihiko
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2017, 5
  • [40] Effect of ethanol on fermentation and lipid composition in Saccharomyces cerevisiae
    Ciesarova, Z
    Sajbidor, J
    Smogrovicova, D
    Bafrncova, P
    FOOD BIOTECHNOLOGY, 1996, 10 (01) : 1 - 12