Generating univariate and multivariate nonnormal data

被引:1
|
作者
Lee, Sunbok [1 ]
机构
[1] Univ Georgia, Ctr Family Res, Athens, GA 30602 USA
来源
STATA JOURNAL | 2015年 / 15卷 / 01期
关键词
st0371; rnonnormal; rmvnonnormal; nonnormal data; skewness; kurtosis;
D O I
10.1177/1536867X1501500106
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Because the assumption of normality is common in statistics, the robustness of statistical procedures to the violation of the normality assumption is often of interest. When one examines the impact of the violation of the normality assumption, it is important to simulate data from a nonnormal distribution with varying degrees of skewness and kurtosis. Fleishman (1978, Psychometrika 43: 521-532) developed a method to simulate data from a univariate distribution with specific values for the skewness and kurtosis. Vale and Maurelli (1983, Psychometrika 48: 465-471) extended Fleishman's method to simulate data from a multivariate nonnormal distribution. In this article, I briefly introduce these two methods and present two new commands, rnonnormal and rmvnonnormal, for simulating data from the univariate and multivariate nonnormal distributions.
引用
收藏
页码:95 / 109
页数:15
相关论文
共 50 条
  • [21] An alternative data analytic approach to measure the univariate and multivariate skewness
    Khattree, Ravindra
    Bahuguna, Manoj
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2019, 7 (01) : 1 - 16
  • [22] Combining univariate approaches for ensemble change detection in multivariate data
    Faithfull, William J.
    Rodriguez, Juan J.
    Kuncheva, Ludmila, I
    INFORMATION FUSION, 2019, 45 (202-214) : 202 - 214
  • [23] Spatial process modelling for univariate and multivariate dynamic spatial data
    Gelfand, AE
    Banerjee, S
    Gamerman, D
    ENVIRONMETRICS, 2005, 16 (05) : 465 - 479
  • [24] An alternative data analytic approach to measure the univariate and multivariate skewness
    Ravindra Khattree
    Manoj Bahuguna
    International Journal of Data Science and Analytics, 2019, 7 : 1 - 16
  • [25] ESTABLISHING RELIABILITY OF BIOMECHANICAL DATA USING UNIVARIATE AND MULTIVARIATE APPROACHES
    LOONEY, MA
    SMITH, SL
    SRINIVASAN, S
    RESEARCH QUARTERLY FOR EXERCISE AND SPORT, 1990, 61 (02) : 154 - 161
  • [26] Multivariate nonnormal process capability analysis
    S. Ahmad
    M. Abdollahian
    P. Zeephongsekul
    B. Abbasi
    The International Journal of Advanced Manufacturing Technology, 2009, 44 : 757 - 765
  • [27] A monotone data augmentation algorithm for multivariate nonnormal data: With applications to controlled imputations for longitudinal trials
    Tang, Yongqiang
    STATISTICS IN MEDICINE, 2019, 38 (10) : 1715 - 1733
  • [28] Multivariate nonnormal process capability analysis
    Ahmad, S.
    Abdollahian, M.
    Zeephongsekul, P.
    Abbasi, B.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2009, 44 (7-8): : 757 - 765
  • [29] A class of weighted multivariate elliptical models useful for robust analysis of nonnormal and bimodal data
    Hea-Jung Kim
    Journal of the Korean Statistical Society, 2010, 39 : 83 - 92
  • [30] Modeling extreme events: Univariate and multivariate data-driven approaches
    Buritica, Gloria
    Hentschel, Manuel
    Pasche, Olivier C.
    Rottger, Frank
    Zhang, Zhongwei
    EXTREMES, 2024,