For a nontrivial additive character lambda and a multiplicative character chi of the finite field with q elements (q a power of an odd prime), and for each positive integer r, the exponential sums Sigma lambda((tr w)(r)) over w is an element of SO(2n + 1,q) and Sigma chi (det w)lambda((tr w)(r)) over O(2n + 1, q) are considered. We show that both of them can be expressed as polynomials in q involving certain exponential sums. Also, from these expressions we derive the formulas for the number of elements w in SO(2n + 1, q) and O(2n + 1, q) with (tr w)(r) = beta, for each beta in the finite field with q elements.
机构:
Univ Paris Cite, Sorbonne Univ, CNRS UMR 7586, Inst Math Jussieu Paris Rive Gauche,Case Postale, F-75251 Paris 13, FranceUniv Paris Cite, Sorbonne Univ, CNRS UMR 7586, Inst Math Jussieu Paris Rive Gauche,Case Postale, F-75251 Paris 13, France
Eche, Regis De La Bret
Granville, Andrew
论文数: 0引用数: 0
h-index: 0
机构:
Univ Montreal, Dept Math & Stat, CP 6128 succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
UCL, Dept Math, Gower St, London WC1E 6BT, EnglandUniv Paris Cite, Sorbonne Univ, CNRS UMR 7586, Inst Math Jussieu Paris Rive Gauche,Case Postale, F-75251 Paris 13, France