Touching the Cloud: Bimanual Annotation of Immersive Point Clouds

被引:0
|
作者
Lubos, Paul [1 ]
Beimler, Ruediger [1 ]
Lammers, Markus [1 ]
Steinicke, Frank [1 ]
机构
[1] Univ Wurzburg, Dept Comp Sci, Wurzburg, Germany
关键词
H.5.2 [Information Interfaces and Presentation]: User Interfaces-Input Devices and Strategies Evaluation/Methodology; I. 3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism-Virtual Reality; MOUSE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present "Touching the Cloud", a bi-manual user interface for the interaction, selection and annotation of immersive point cloud data. With minimal instrumentation, the setup allows a user in an immersive head-mounted display (HMD) environment to naturally interact with point clouds. By tracking the user's hands using an OpenNI sensor and displaying them in the virtual environment (VE), the user can touch the virtual 3D point cloud in midair and transform it with pinch gestures inspired by smartphone-based interaction. In addition, by triggering voice-or button-pressactivated commands, the user can select, segment and annotate the immersive point cloud, thereby creating hierarchical exploded view models.
引用
收藏
页码:191 / 192
页数:2
相关论文
共 50 条
  • [41] Physically-Based Bimanual Volumetric Selection for Immersive Visualizations
    Benavides, Angela
    Khadka, Rajiv
    Banic, Amy
    VIRTUAL, AUGMENTED AND MIXED REALITY: MULTIMODAL INTERACTION, PT I, 2019, 11574 : 183 - 195
  • [42] Are All Point Clouds Suitable for Completion? Weakly Supervised Quality Evaluation Network for Point Cloud Completion
    Shi, Jieqi
    Li, Peiliang
    Chen, Xiaozhi
    Shao le Shen
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 2796 - 2802
  • [43] Sailing Through Point Clouds: Safe Navigation Using Point Cloud Based Control Barrier Functions
    Dai, Bolun
    Khorrambakht, Rooholla
    Krishnamurthy, Prashanth
    Khorrami, Farshad
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (09): : 7731 - 7738
  • [44] TGPS: dynamic point cloud down-sampling of the dense point clouds for Terracotta Warrior fragments
    Liu, Jie
    Song, Da
    Geng, Guohua
    Tian, Yu
    Yang, Mengna
    Liu, Yangyang
    Zhou, Mingquan
    Li, Kang
    Cao, Xin
    OPTICS EXPRESS, 2023, 31 (06) : 9496 - 9514
  • [45] Bimanual coordination in typical and atypical infants: Movement initiation, object touching and grasping
    de Campos, Ana Carolina
    Vanzo Cerra, Larissa Carvalho
    dos Santos Silva, Fernanda Pereira
    Cicuto Ferreira Rocha, Nelci Adriana
    RESEARCH IN DEVELOPMENTAL DISABILITIES, 2014, 35 (10) : 2416 - 2422
  • [46] Touching annotations: A visual metaphor for navigation of annotation in digital documents
    Bowers, C. P.
    Creed, C.
    Cowan, B. R.
    Beale, R.
    INTERNATIONAL JOURNAL OF HUMAN-COMPUTER STUDIES, 2013, 71 (12) : 1103 - 1111
  • [47] Web-based Video-Assisted Point Cloud Annotation for ADAS validation
    Mujika, Andoni
    Dominguez, Ana
    Tamayo, Inigo
    Senderos, Orti
    Barandiaran, Javier
    Aranjuelo, Nerea
    Nieto, Marcos
    Otaegui, Oihana
    PROCEEDINGS WEB3D 2019: THE 24TH INTERNATIONAL ACM CONFERENCE ON 3D WEB TECHNOLOGY, 2019,
  • [48] Annotation Tool and Urban Dataset for 3D Point Cloud Semantic Segmentation
    Ibrahim, Muhammad
    Akhtar, Naveed
    Wise, Michael
    Mian, Ajmal
    IEEE ACCESS, 2021, 9 : 35984 - 35996
  • [49] Design of a Resource-oriented Framework for Point Cloud Semantic Annotation with Deep Learning
    Hao, Chen-Yu
    Chen, Mei-Hsin
    Chou, Tien-Yin
    Lin, Chia-Wei
    2018 IEEE FIRST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE), 2018, : 228 - 233
  • [50] Context-Aware Transformer for 3D Point Cloud Automatic Annotation
    Qian, Xiaoyan
    Liu, Chang
    Qi, Xiaojuan
    Tan, Siew-Chong
    Lam, Edmund
    Wong, Ngai
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 2, 2023, : 2082 - 2090