Superconvergence analysis of Galerkin method for semilinear parabolic integro-differential equation

被引:5
|
作者
Yang, Huaijun [1 ]
机构
[1] Zhengzhou Univ Aeronaut, Sch Math, Zhengzhou 450046, Peoples R China
基金
中国国家自然科学基金;
关键词
Semilinear parabolic; integro-differential equation; A linearized numerical scheme; Superconvergence error estimate; FINITE-ELEMENT METHODS;
D O I
10.1016/j.aml.2021.107872
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, based on the bilinear element used for spatial discretization and a linearized backward Euler scheme used for temporal discretization, the superconvergence error estimate is derived for semilinear parabolic integro-differential equation without certain time-step restrictions. The key is to derive a uniform boundness of the numerical solution in energy norm under the weaker assumption compared to previous literatures for nonlinear term. Numerical results are presented to confirm the correctness of the theoretical analysis. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Singularity analysis for a semilinear integro-differential equation with nonlinear memory boundary
    Yulan Wang
    Jiqin Chen
    Chengyuan He
    Journal of Inequalities and Applications, 2014
  • [12] Singularity analysis for a semilinear integro-differential equation with nonlinear memory boundary
    Wang, Yulan
    Chen, Jiqin
    He, Chengyuan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [13] Superconvergence of Finite Element Approximations to Parabolic and Hyperbolic Integro-Differential Equations
    张铁
    李长军
    NortheasternMathematicalJournal, 2001, (03) : 279 - 288
  • [14] EXISTENCE OF REGULAR SOLUTIONS FOR SEMILINEAR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS
    ENGLER, H
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1986, 144 : 23 - 47
  • [15] The obstacle problem for semilinear parabolic partial integro-differential equations
    Matoussi, Anis
    Sabbagh, Wissal
    Zhou, Chao
    STOCHASTICS AND DYNAMICS, 2015, 15 (01)
  • [16] On the numerical solution of a parabolic Fredholm integro-differential equation by the RBF method
    Borachok, Ihor
    Chapko, Roman
    Palianytsia, Oksana
    RESULTS IN APPLIED MATHEMATICS, 2025, 26
  • [17] Justification of a Galerkin Method for a Fractional Order Cauchy Singular Integro-Differential Equation
    Fedotov, A. I.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2024, 64 (10) : 2194 - 2211
  • [18] AN hp-VERSION DISCONTINUOUS GALERKIN METHOD FOR INTEGRO-DIFFERENTIAL EQUATIONS OF PARABOLIC TYPE
    Mustapha, K.
    Brunner, H.
    Mustapha, H.
    Schoetzau, D.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (04) : 1369 - 1396
  • [19] Galerkin method applied to telegraph integro-differential equation with a weighted integral condition
    A Guezane-Lakoud
    N Bendjazia
    R Khaldi
    Boundary Value Problems, 2013
  • [20] Galerkin method applied to telegraph integro-differential equation with a weighted integral condition
    Guezane-Lakoud, A.
    Bendjazia, N.
    Khaldi, R.
    BOUNDARY VALUE PROBLEMS, 2013,